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We investigate an approximation problem in weighted spaces of continuous func-
tions whose domain is a locally compact Hausdorff space and whose values are
non-empty compact convex subsets of a locally convex space. We prove a Korovkin
type approximation theorem for monotone linear operators on such spaces and
generalize results from earlier work which deals with compact domains and com-
pact convex subsets of a Frechét space, resp. of R”.  © 1999 Academic Press
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1. WEIGHTED SPACES OF REAL-VALUED FUNCTIONS

Throughout this paper, let X be a locally compact Hausdorff space and
C(X) the space of all continuous real-valued functions on X. A function
ffX—>R is said to wvanish at infinity if for every &>0 the set
{xeX||f(x)|=e} is relatively compact in X. According to Nachbin [8]
and Prolla [9] a family #~ of non-negative upper semicontinuous func-
tions on X is called a family of weights if for all wy, w, € #" there are
wsy € and p >0 such that w; <pw,; and w, <pw,;. With any family of
weights #~ we associate the subspace of C(X)

Cy(X)={fe C(X)|wfvanishes at infinity for all we #}.
Together with the locally convex topology generated by the seminorms

pw(f)=sup {Iwf(x)| | xe X}

forwe# and fe C,(X) we call C,-(X) a weighted space of functions. We
shall mention a few examples and refer to [ 8-10] for details.
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1.1. ExampLES. (a) If # consists of the constant function w =1, then
C,(X)=Cy(X), the space of all functions in C(X) that vanish at infinity,
endowed with the supremum norm.

(b) If #" =Cg(X)={we Co(X)|w=0}, then C, (X)=Cyx(X), the
space of all bounded functions in C(X). The weighted topology (called the
strict topology) is generally coarser than the supremum norm topology on
Cy(X).

(c) If # consists of the characteristic functions of all compact sub-
sets of X, then C,-(X)= C(X) with the topology of compact convergence.

(d) If # consists of the characteristic functions of all finite subsets of
X, then C,-(X)= C(X) with the topology of pointwise convergence.

(e) If W=C*(X)={weC(X)|w=0}, then C,(X)=C,(X), the
space of all functions with compact support in C(X). The weighted topol-
ogy is generally finer than the supremum norm but coarser than the induc-
tive limit topology on C,.(X).

The weighted spaces C,,-(X) are endowed with the pointwise order for
functions. Korovkin type theorems deal with approximation processes
modeled by equicontinuous nets (7,),.,, of positive linear operators
T,.Cu(X)— C,(X). For a subset .# of C,-(X), the Korovkin closure
A (M) of 4 consists of all functions f e C,-(X) such that T,(f) converges
to fin the weighted topology of C,,-(X) whenever (T,),.., 1S an equicon-
tinuous net of positive linear operators on C,,-(X) and T, (m) converges to
m for all me 4.

We shall cite Theorem 2.1 from [ 10]. For the special case of Cy(X) with
the supremum norm, i.e., the case of our Example 1.1(a), it is due to Bauer
and Donner [2]. By span(.#) we denote the linear span of .#, by M gz(X)
the space of all finite regular Borel measures on X, and by M ;(X) the
positive cone in M gz(X). We set

Xo={xeX|w(x)>0for somewe#}.

1.2. THEOREM. Let X be a locally compact Hausdorff space, and let W~
be a family of weight functions on X. Let M be a subset of C,-(X). For a
function fe C,-(X) the following are equivalent:

(a) feH (M).
(b) For every xe X,
S(x)=sup inf {m(x)|mespan(.4), wf <wm+e}

weW
>0

= inf sup {m(x)|mespan(.4), wm<wf +¢}.
wew

e>0
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(c) For every xe Xy, peM i (X) and we W

J wmdp=m(x)  forall me.d implies f wfdp = f(x).

X

A brief inspection of the proof in [ 10] reveals that for the validity of the
implications (b) <> (c) <> (a) the operators T, need to be defined only on a
subcone D, (X) of C,-(X) that contains both .# and the function f. The
requirements for operators on a cone, however, need to be adapted as
follows: Linearity means that an operator 7: D, (X) — C,-(X) is additive
and positively homogeneous. Continuity and monotony are combined in
the following condition:

(C) For every we W there are w' e W and p>0 such that for all
S g€ Dy (X)

wl,(f)<wl,(g)+1 whenever W f<w'g + p.

Equicontinuity for a net (7,),. 4 of such operators means that the weight
function w’ and the constant p >0 may be chosen simultaneously for all
operators 7,. Any linear operator satisfying (C) may be extended to
the linear span of D, (X) under preservation of (C). We refer to [7] for
a systematical introduction of continuous linear operators on (locally
convex) cones.

A Korovkin system for D, (X) is a subset .# of D, (X) such that
D, (X)c A (M). Condition (c) of Theorem 1.2 yields the following
criterion which is a reformulation of Corollary 2.3 in [10]:

1.3. PROPOSITION. Let .# be a subset of C,,-(X). Suppose that .4 con-
tains a function that does not vanish on all of X, and that for every pair of
distinct points x, y € X, there is m, ,, € span(.#) such that

m, ,=0 on X, m, ,(x)=0, and m, ,(y)>0.

x, y =

Then M is a Korovkin system for C.,-(X).

We shall say that a subset & of non-negative functions in C,-(X) is a
unit family if for every x € X, there is e, € & such that e, (x)>0. A subset
S < Cy(X) separates the points of X, if for all x # y e X, there is s€ ¥
such that s(x) #s(y). For any pair of such families & and ¥ the functions

M ={e, es,es* e, se S}
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fulfill the above criterion, hence form a Korovkin system for C,-(X): &
contains a non-zero function, and the condition in Proposition 1.3 is
satisfied by functions

v e(y)(s(y) —s(x))>

For X=[0,1], # ={1}, & ={1}, and ¥ = {x} this leads to the classical
Korovkin system .# = {1, x, x*} for C([0, 1]). Many more examples may
be found in [1, 2, 10]. Furthermore, condition (b) of Theorem 1.2 yields a
Stone—Weierstrass type result (Corollary 2.2 in [ 10]): The vector sublattice
generated by a Korovkin system .# for C,-(X) is seen to be dense in
C,-(X) with respect to its weighted topology.

2. REPRESENTATIONS OF COMPACT CONVEX SETS

In the following, let E be a real locally convex topological vector space,
E' its dual endowed with the weak* topology. For a subset 4 of E, its polar
in E'is A°={peE |u(a)<1 for all ae A}. The polar in E of a subset of
E' is correspondingly defined. We consider the usual addition and multi-
plication of sets.

Let B be a family (not necessarily a base) of closed convex
neighborhoods of the origin in E, directed downward for set inclusion. A
subset A of E is said to be precompact relative to B if for all Ve B and
&> 0 there are a, ..., a,, € A such that

Ac

i

C=

(a;+eb).

1

We shall denote the cone of all non-empty convex subsets of E that are
precompact relative to 8B by ¥y (E) and by Zy(E) any subcone thereof.
Every A € 65 (E) is bounded relative to B, that is for every Ve there is
p >0 such that A < pV.

We proceed to represent the elements of %y (E) as continuous real-
valued functions on a suitable locally compact Hausdorff space Y. For a
fixed Ve B let

Yy={(u, V) |0#£peV°y,
endowed with the weak topology of the injection

(w, VYou:Y,>E.
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Thus Y, is homeomorphic to ¥°\{0} and therefore locally compact and
Hausdorff. Now let

Y:@ Yy

Ve

be the topological sum of the disjoint spaces Y. A subset of Y is open
(closed) if any only if its intersection with every Y is open (closed) in Y.
As a sum of locally compact Hausdorff spaces Y is itself locally compact
and Hausdorff.

Now with every set 4 € 6 (E) we associate a real-valued function f, on
Y defined by

Salu, V)=sup {u(a)|ae A}

for all (u, V) e Y. This function is seen to be continuous on Y, as for any
fixed Ve®B and ¢>0 there are ay, .., a, € A such that 4 < {J7_, (a;+¢eU).
The function f”(u, V) =max?_, u(a;) is obviously continuous on Y, and

S M <fal, VIS S0, V) +e

holds whenever u e V°. This shows that f, itself is continuous on Y. But
continuity an all of the spaces Y, implies continuity on their topological
sum. Next we observe that the mapping

A f i 6x(E)— C(Y)

is additive and positively homogeneous, i.e. f,, = f4+ f5 and f,,=of ,
for all 4, Be%x(E) and o>0. If C is the convex hull of the sets
A, Be €y (E), then f is the (pointwise) maximum of the functions f, and
f5. Furthermore, if V'€ B and v denotes the characteristic function on Y of
the subset Y, then for 4, Be ¥x(E) and p =0

of 4 <ufg+p ifand only if A< B+p'V forall p'>p.

To verify this claim, let A = B+ p'V for any p’' > p. Then for all a € A there
are be B and veV such that a=b+ p'v, hence u(a)<u(b)+p' for all
we Ve, This shows f (u, V)< falu, V)+p' for all (u, V)eY,. If on the
other hand A4 & B+ p'V for some p’ > p, then a¢ B+ p'V for some a€ A4,
that is (¢ — B) n p' V= . By the Hahn—Banach separation theorem there
is we E'" such that u(p'v)<p'<wu(a)—u(b) for all ve V and be B. This
shows 0#ueV° Then (u, V)eY, and p'< f,(u, V)— fs(u, V). Thus
fA(:u’ V) >fB(,u9 V) +pa indeed.
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The embedding A4 + f, is therefore monotone if we endow %y (FE) with
the set inclusion as order, and one-to-one on every subcone Zg(E) of
%y (E) whose elements are closed sets in the topology on E that is created
by the neighborhoods in 2.

For every Ve ¥ the set Y, is both open and closed in Y. Its charac-
teristic function v is therefore continuous on Y. Moreover, for every
A € €yx(E) the function vf, vanishes at infinity. Indeed, if f,(u, V) =¢ for
some ¢ >0, then (4, V)e Y, and the continuity of the function f, on Y
shows that the set {(u, V)e Y, |f,(u, V)>¢} is compact.

We may now introduce suitable weighted topologies on %y (E): The set
" of characteristic functions v corresponding to the neighborhoods Ve B
is directed upward and forms a family of weights on Y. Via the embedding
A f, the cone %y (E) may be considered as a subcone of C,-(Y). The
weighted topology on %y (E) corresponding to the weighted topology of
C,-(Y) is induced by the semimetrics

dy(A,B)=inf {p=0|A=B+pVand Bc A+ pV}

for A, Be €4 (E) and Ve B. We call B a family of weights on €gx(E) and
for any subcone Py (E) of €y (E) we call (Zy(E), B) a weighted cone of
sets. Let us illustrate this with a few examples:

2.1. ExampLEs. (a) If E is a normed space with unit ball B and
B = {B}, then %y(E) carries the topology of the Hausdorff metric

dg(A, B)=inf{p>0|A<B+pBand Bc 4+ pB}

for A, Be 6 (E).

(b) If E carries the weak topology induced by E’, that is B consists
of the polars of all finite subsets of E’, then the corresponding weighted
topology on %y (E) is generated by the semimetrics

d, (A, B) = |sup u(a) —sup u(b)|

acA beB

for A, Be 65(FE) and ue E'.

(c) Let E be an ordered normed space with unit ball B, and for a
convex subset 4 of E denote by D(A) the decreasing closed and convex
hull of 4, ie., the closure of the set {be E|b<a for some ae A}. Then
B ={D(B)} induces the topology of the Hausdorff metric with respect to
D(A) and D(B) for sets A, Be 6y (E).
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We may use the family of neighborhoods 8 to define an order relation
on %y (E): For elements A, Be %y (E) we denote

ALy B if AcB+eV for all Ve® and e>0.

This relation on %y (E) is in general finer than the set inclusion. Via the
embedding as singleton sets it induces an order on E. By

e=U{pV°|VeB, p>0}

we denote the polar in E’ of the negative cone in this order on E. Its non-
zero elements are those functionals x € E’ such that (u, V)e Y for some
Ve®.

In order to apply Theorem 1.2 we consider linear (i.e., additive and
positively homogeneous) operators T on subcones Zg(E) of Gy (E) satisfy-
ing:

(C") For every Vel there are V'eB and p>0 such that for all
A, Be g (E)

T(A)cT(B)+V whenever A< B+ pV'.

This requirement corresponds to condition (C) for the induced operators
on the representation of Yy (E) as a subcone of C,-(Y). It combines con-
tinuity and monotony with respect to the order <. Equicontinuity for a
net (7,),c 4 of such operators means that V' € 8 and p >0 may be chosen
simultaneously for all operators 7.

Correspondingly, the Korovkin closure 4 (A") of a family A4 < Py (E)
consists of all sets 4 € Yy (E) such that T, (A) converges to 4, whenever
(T,),c.s 1s an equicontinuous net of linear operators on Yy (E) satisfying
(C'), and T,(N) converges to N for all N e 4". Convergence is meant in the
weighted topology of Py (E). If #'(N')=Dg(E), then A" is a Korovkin
system for (Y (E), B). Using the representation of Yy (E) as a subcone of
C,-(Y), we shall proceed to identify Korovkin systems:

Only singleton sets {a} € €y (E) have an additive inverse { —a} € 6y (E),
and fy_, = —f(, holds for the representing functions in C,-(Y). For a
subset A" of € (E) we define its span to be the subcone of € (E) generated
by /" and the negatives of all singleton sets in .4". By span(./") we denote
the closure of this span with respect to the weighted topology of
(¢w(E), B).

For ue E'y, the half space

H,={acE|u(a)<0}
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is closed in E and decreasing with respect to the order <. The following
criterion for Korovkin systems in (Zg(E), B) corresponds to the criterion
for Korovkin systems in C,,-(X) in Proposition 1.3:

2.2. PROPOSITION. Let (Zy(E), B) be a weighted cone of sets, N a sub-
set of Dy (E). Suppose that for every u e E'y the union of all sets Dg(N), for
Nespan(A") such that 0e Dgy(N)<H,, is dense in H,. Then N is a
Korovkin system for (94 (E), B).

Proof. We shall verify condition (c) from Theorem 1.2 for C,-(Y): Let
(u, V)€Y, that is, 0#u€cEy, and let ¢ M £ (Y) and ve ¥ such that
jYUfN dp = fx(u, V) holds for all Ne ./, hence even for all N espan(.4").
For any (v, U)e Y there is either an element « in the interior of H, such
that v(a) >0, or H, = H,, hence v is a positive multiple of x. In the first
case, by our assumption we may find ¢’ € H, such that v(a') >0 as well,
and o' € N for some N espan(./") such that 0 € Dy (N) = H,. We infer that
the corresponding function f, is non-negative on Y, fy(u, ¥)=0 and
vy, U)=y(a')>0. As jYUfN d¢p =0, this shows that any such point
(v, U)e Y may not be contained in the support of the measure v¢. This
measure is therefore supported by the set

{(v, U)e Y |v=Ju for some 1> 0}.

But on this set any two functions f, and f representing sets 4 and B in
Yy (E) are proportional. The measure v¢ therefore coincides on the
representation of %y (E) with a certain positive multiple pe, 1, of the point
evaluation in (u, V). Now we use our assumption for v=0¢€ E%: There is
ae Hy=E such that u(a)>0 and ae N for some N espan(./"), hence

fN(,u: I/) >0. But this ylelds SY UfN d¢ = p‘g(,u, V)(fN) = fN(,ua V)a demon-
strating that p =1, indeed. |

2.3. ExampLEs. (a) If span(./") contains the segments {la |0 <A< 1}
for all ae E, then /" fulfills the criterion of Proposition 2.2, hence is a
Korovkin system for (64 (E), B) for any choice of the family of weights 8.

(b) For E=R" with the unit vectors ¢; and the Euclidean unit ball
B, the family

N ={B,{e;} |i=1,..,n}

forms a Korovkin system for (%5 (R”), 8B), where 8 = {B}. This is a special
case of the following:

(c) Let E be a separable real Hilbert space with the inner product
{, > and unit ball B. Let T: E— E be a compact linear operator whose
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range is dense in E. The closure B of T(B) is compact and convex. Let
{e;} icn be an orthonormal basis for E. We claim that the family

N =1{B, e} |ieN}

forms a Korovkin system for (% (E), B), where 8= {B}. We shall verify
the criterion of Proposition 2.2.

For 0# yeE, let H,={acE|{a, y) <0} be a closed half space in E.
The adjoint operator T* of T is one-to-one, as the range of 7 is dense in
E, hence T*(y)#0, and we set

bo=|IT*()II =" T(T*(y)) € B.
As for all beB

CT(h), y> =<b, T*(y)> < IT*(¥) =<bos ¥,

we infer that

<b0a y>:max{<ba y> |bEB}9

hence 0e N=B—b,cH,. Clearly Nespan(./"). Now a simple Hahn-
Banach argument shows that the union of all positive multiples of N is
indeed dense in H,: Let xeE such that (n, x> <0 for all neN, ie.
{b, x» <<by, x) for all be B. The choice of

b=|T*(x)|~! T(T*(x)) € B,
for the above, together with the Cauchy—Schwarz inequality yields
IT*() | < NT*(x) | =1 KTH(p), TH(x) < | TH(x)-

But equality shows that the vectors 7*(y) and 7*(x) are linearly depend-
ent, and as T* is one-to-one, we infer that x is a multiple of y. Again using
the density of the range of 7, we conclude that this multiple is non-
negative, and (¢, x) <0 holds for all ce H,. Therefore H, is contained in
the closed subcone of E generated by N.

For Hy=E we choose N=Be ./ and observe that by our assumption
on 7 the union of all positive multiples of B is dense in E.

(d) Let E be a real reflexive Banach space with unit ball B. The
norm on E is smooth if every point in the boundary of B is supported by
a unique closed hyperplane (cf. [5, 20F]). In this case, let B be a
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neighborhood base for the weak topology on E induced by E’. Then
Be @y (E). Let S be a total subset (i.e. the span of S is dense) of E. Then
the family

N ={B, {e} |ee S}

forms a Korovkin system for (% (E), B). We shall verify the criterion of
Proposition 2.2.

For 0#uekE' let H,={acE|u(a)<0} be a closed half space in E.
There is b, in the boundary of B such that

u(bo) = max{su(b) | be B},

hence 0e N=B—b,= H, and Nespan(./"). As there is no other closed
hyperplane H in E with this property, the union of all positive multiples of
N is seen to be dense in H,. For Hy=E we choose all multiples of
N=Be.V.

Examples of smoothly normed reflexive Banach spaces are integration
spaces L? (X, u) for 1 <p < + 0.

(¢) For E=Rand B={(—o0, 1]}, all bounded above intervals in R
are precompact relative to ¥, hence contained in %y (R). A Korovkin
system for (6g(R), B) is given by A" = {(—o0, 1]}.

2.4. Remark. Readers familiar with the theory of locally convex cones
as developed in [ 7] will realize that a similar representation may be used
in this more general situation: A locally convex cone (P, V) may be embed-
ded in a full cone (P, V) that contains all neighborhoods as elements. The
dual cone of P is locally compact in its weak* topology and serves as the
domain for a suitable weighted space of real valued functions C,-(Y).
The weight functions are the characteristic functions of the polars of
neighborhoods. If all its eclements are bounded, then P is canonically
represented as a subcone of C,-(Y).

3. WEIGHTED CONES OF SET-VALUED FUNCTIONS

As before, let X be a locally compact Hausdorff space and #" a family
of weights on X. Let E be a real locally convex topological vector space
and B a family of closed convex neighborhoods of the origin in E, directed
downward for set inclusion. Let @y (E) be the cone of all non-empty convex
subsets of E that are precompact relative to B, % (E) a subcone of G (E).



104 WALTER ROTH

A function F: X — 9y (FE) is continuous at x,€ X if for every Ve® and
&> 0 there is a neighborhood U of x, such that d, (F(x), F(x,)) <e, that is,

F(x)c F(xq)+ eV and F(xy) = F(x)+¢eV

for all xe U. Let C(X, 95 (E)) denote the cone of all such functions that are
continuous on X. Given Ve, we say that a function F: X — Py (E)
vanishes at infinity relative to V if for every ¢ >0 the set {xe X | F(x) ¢ eV}
is relatively compact in X. Accordingly, we denote by C, (X, Zy(E))
the cone of all functions Fe C(X, Zy(E)) such that wF vanishes at infinity
relative to V for all Ve®B and we#w". The weighted topology on
Cyou(X, Zy(E)) is induced by the semimetrics

d,, v(F, G)=sup {w(x) dy(F(x), G(x))}

xeX

for F,Ge Cygu(X, Zg(E)), we# and Ve B. We call Cyyp g (X, Iu(E))
a weighted cone of set-valued functions. Simple compactness arguments
show that for any real-valued function f'e C,-(X) and a set 4 € Dy (E) the
set-valued function

x—f(x) A

belongs to Cy g u(X, Zy(E)). For any function Fe Cy gou(X, Zy(E)), all
weW ', VeB, and >0 one may find a set Ce @y (E) such that

w(x) F(x)c C+eV for all xeX.

For Korovkin type approximation problems we consider linear (i.e.,
additive and positively homogeneous) operators 7 on C,,-gu(X, Zu(E))
satisfying

(C") Forallwe W and Ve B there are w' e W', V' € B and p > 0 such
that for all F, Ge Cy g u(X, Z5(E))

w(x) T(F)(x)cw(x) T(G)(x)+V  forall xeX,
whenever
w'(x) F(x)cw'(x) G(x)+ pV’ forall xeX,
Evidently, this condition combines continuity and monotony. Equicon-

tinuity for a net (7,),.4 of such operators means that w', V' and p may
be chosen simultaneously for all operators T,.
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For a subset & of C, o u(X, Zu(E)), the Korovkin closure 4 (¥) of &
consists of all functions Fe C,,-gu(X, Z»(E)) such that T,(F) converges
to F, whenever (T,),.., 1S an equicontinuous net of linear operators on
Cyou(X, Zy(E)) satisfying (C"), and T,(L) converges to L for all Le £.
Convergence is meant in the weighted topology of C,,- o u(X, Zy(E)).

We shall use the representation of (Zg(E), B) as a subcone of C,-(Y)
in order to represent C,,- ¢ (X, Zy(E)) as a subcone of a weighted space
of real-valued functions on X'x Y. We begin with some general observa-
tions.

For real-valued functions f on X and g on Y we shall denote by f® g the
function (x, y)—g(x) f(y) on Xx Y. For sets .# and 4" of real-valued
functions on X and Y we set

MN ={m@n|me.M,ne N}.

The function f® g is continuous on X x Y if both f and g are continuous
on X and Y, upper resp. lower semicontinuous if both f and g are upper
resp. lower semicontinuous and non-negative. Thus, if #  and ¥~ are
families of weights on X and Y respectively, then " ® ¥~ is a family of
weights on X x Y. It is straightforward to check that

Chp(X)®Cy(Y)cCpgyp(XxY).
For the seminorms on C, g, (X x Y), note that
Pweo(f®8) =pu(f) P.(8)
As before we denote by
Xo={xeX|w(x)>0for somewe ¥}
and
Yo={yeY|v(y)>0for someve”}.

For compact spaces X and Y and the unit families & = {1} and 7 = {1}
the following may be found in [6]:

3.1. THEOREM. Let X and Y be locally compact Hausdorff spaces, W~
and V" families of weights on X and Y, respectively. Let ./ be a Korovkin
system, & a unit family for C,-(X). Let N~ be a subset, & a unit family for
C,-(Y). Set

L=(MQQF)(EQN).
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If for Fe Cy g (XX Y) the functions y— F(x, y) are in A (A") for every
x€ Xy, then Fe A (%). In particular, if N is a Korovkin system for C,(Y),
then & is a Korovkin system for C, g (X x Y).

Proof. We shall verify condition (¢) in Theorem 1.2. Let (x4, yo)€
Xox Yy, and let pe M F(XxY)and w®ve# ® 7 such that

j (w®u) Ldp=L(xo, y,) forall Le.
XxY

For any non-negative function fespan(%) such that f(y,)=1, the
mapping

g—g®f: Cy(X)— CW@V(XX Y)

is an embedding that preserves the seminorms of C,-(X), as for

W/®DIEW‘®“/ we have pw'®u'(g®f):pw'(g) pv’(f)’ and as pv'(f)>0
for some v’ € V. Thus

g ] r@ue®s) dh

defines a continuous positive linear functional on C,-(X) which coincides
with the point evaluation in x, on the Korovkin system .#, hence on all
of C,-(X) by Theorem 1.2(c). Now for any x, #xe X there is a non-
negative function g e C,,-(X) such that g(x) > g(x,) =0, and for any ye Y,
there is a non-negative function fespan(Z) such that f(y,)=1 and
f(y)>0. The above shows that none of these points (x, y) may be in the
support of the Borel measure (w®wv)¢. As v(y)=0 for the remaining
points y e Y, we realize that this measure is in fact supported by the set
{xo} X Y= X' x Y. Next we choose a non-negative function e € span(&) such
that e(x,) = 1. The mapping

g—e®g:Cu(Y)—>Cpg,r (X xY)

is an embedding that preserves the seminorms of C,-(Y), and

g ] (w@ue®g) ds

is a continuous positive linear functional on C,-(Y) that evaluates as n( y,)
for all ne A". Thus, as the function f, mapping y— F(x,, y), is contained
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in #(A"), and as the functions F and e ®f coincide on the set {x,} x ¥,
we have

| weoFdp=| (v@u)e®/)db=f(yo)=F(xo. yo).

indeed. |

For our purposes we choose the locally compact space Y and the family
¥" weight functions corresponding to the neighborhood system 8B as in
Section 2. With every set-valued function Fe Cy gu(X, Zg(E)) we
associate the real-valued function fr on X x Y such that for xe X and

y=wVeY
Se(x, ¥) = freo (1, V) =sup {u(a) |ae F(x)}.

We first verify that fr is continuous on XxY: Let x,eX and
Yo=(u, V)€ Y. Given ¢ >0, from the continuity of the function fp, on Y
we infer that there is a neighborhood U, < Y, of y, such that

|fe(x0, ¥) — fr(x0, Yo)| = |f1-*(x0)()’) _fF(xO)(y0)| <ef2

holds for all y e Uy. Likewise, using the neighborhood Ve % from above,
there is a neighborhood Uy of x, such that

dy(F(x), F(xo)) <¢/2
for all xe& Uy. Then for all (x, y)e Uy x Uy
|fe(x, ») = fr(Xos V)=o) (1t V) — Fro (1 V) <&/2.
Thus
Lfe(x, ¥) = fe(X0s o) S |fr(X, ¥) = fe(xXo. V)| + [ fr(x0, ¥) = fr(Xo5 o)l
<e.

Next we shall show that f belongs to C,- g, (X x Y) whenever F belongs
to Cy ou(X, Zy(E)). Indeed, for we #, the weight function ve ¥~ corre-
sponding to Ve B and ¢>0,

(W) fr(x, y) =v(y) w(x) fron(y)=e

for (x, y)e Xx Y implies that y =(u, V)e Y, hence ue V° and w(x) F(x)
¢ (&/2) V. Therefore x belongs to the relatively compact subset

X.={xeX|w(x)F(x)#(2) V}
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of X. As mentioned before, one may find C e @y (F) such that w(x) F(x) <
C+ (&/2) V for all xe X. Accordingly,

e<u(y) W(x) fro(¥) S fely) +¢/2

shows that y belongs to

Yo={(nV)eYy|fc(y)=e/2}.

This set is compact, as f. is continuous on Y, demonstrating that (x, y)
belongs to the relatively compact product X, x Y., indeed. The embedding

Fofp: Cpeu(X, Zy(E)) > Cypgypr(XxY)

is additive, positively homogeneous, and monotone if we endow
Cy on(X, Zy(E)) with the order of pointwise set inclusion. Furthermore,
for F,Ge Cyrgu(X, Zu(E)) and p >0 we have

(w®0v) fe(x, y) (W) fo(x, y)+p
for all (x, y)e Xx Y if and only if
w(x) F(x)cw(x) G(x)+p'V

for all xeX and p'>p. Thus, linear operators on C, g q(X, Zy(E))
satisfying (C") correspond to linear operators on a subcone of
Cy o+ (X xY) satisfying (C).

Propositions 1.3 and 2.2 provide criteria to identify Korovkin systems in
C,(X) and Y4 (E), the latter being identified with a subcone of C,-(Y).
Unit families in C,,-(X) are obvious and may consist of a single strictly
positive function. A unit family % in Zg(E) consists of sets F e Py (E) such
that 0 € Dy (F). This guarantees that the function f5 is non-negative on Y.
We require that for every y=(u, V)€ Y there is Fe % such that fr(y)>0.
The latter holds in particular if the union of all non-negative multiplies of
the sets in & is dense in E.

Summarizing, we may now formulate our result. For compact spaces X,
E=R" the unit families & ={1} and # = {B}, and ./" consisting of all
non-empty compact convex subsets of R”, it may be found in [6]. For
paracompact spaces X and Frechét spaces FE, related characterizations of
Korovkin systems for set-valued functions had been established in [ 3, 4].

3.2. THEOREM. Let C,gu(X, Zu(E)) be a weighted cone of set-valued
functions. Let M be a Korovkin system of non-negative functions, & a unit
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family for C,-(X), and let N be a Korovkin system, & a unit family for
(9% (E), B). Then the functions

xtm(x)F  for med and FeF
xt—e(x) N for ee& and Ne N

Sform a Korovkin system for C., g u(X, Dg(E)).

This follows directly from Theorem 3.1, if we keep in mind that in the
preceding representation, for ge C,-(X) and A€ Pgx(E) the set-valued
function x—g(x) 4 in C, g (X, Zy(E)) corresponds to the real-valued
function g®f, in Cypr gy (XX Y).

3.3. ExampLes. (a) For X=[0,1] and # ={1} we may choose the
classical Korovkin system .# = {1, x,x*} and the unit family &={1}.
For E=R" and B={B} we may choose /4 ={B, {e;} |i=1,..,n} (cf
Example 2.3(b)) and # ={B}. In this way Theorem 3.2 yields Vitale’s
result [11].

(b) Let X=[0, +o0), and let #" consist of the functions w,(x)=
e~ for all « > 0. Following Proposition 1.3, the subset

M= {my | m(x)=xFfork=0,1,2}

is a Korovkin system for C,,-(X). We choose & ={1}. For a normed space
E and B={B}, the family 4 =% of all segments 4= {1a|0<A<1},
for ae E, forms a Korovkin system as well as a unit family for @ (E)
(Example 2.3(a)). With these insertions Theorem 3.3 describes a suitable
Korovkin system for C, g u(X, €g(E)).

Let us illustrate this example with an approximation process modeled by
a modified version of the classical Bernstein operators. For a function F in
Cyon(X,€y(E)) and ne N define

2

n2 n2 X k o\ _k k
Tn(F)(x): k§0<k><n> <1_n> F<n>’ for x<n
F(n

) for x>n.

These operators T, are linear on C, g u(X, 65 (E)). With some straight-
forward computations one may check the following: for every A € €y (E)

T,(my®A)(x)=A4 forall xe[0, 4+ o),
T,(m ®@A)(x)=xA4 forall x<n,

21 1
" 5 x2+x>A forall x<n.
n

T, (my ® A)(x) = <
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This shows in particular, as A is bounded, that 7, (m;, ® A) converges to
m, ® A for k=0, 1,2 in the topology of C, g u(X, €x(E)). Furthermore,
one may check that the sequence (7,),.n satisfies (C”), as for all
F,GeCygu(X, bx(E)) and >0 and all ne N

F(x)cG(x)+e*B forall xeX
implies
T,F)x)=T,(G)(x)+e“*B  forall xelX.

We conclude that 7, (F) converges to F for all Fe C,,gqu(X, 6g(E)).

(¢) For X=N and 7 = {1}, C,-(X) is the space ¢, of all sequences
(X;);en In R converging to 0, endowed with the /*-norm. The family

M= (1i);en fork=1,2,3}

fulfills the criterion of Proposition 1.3 and forms a Korovkin system for c¢,.
We choose & ={(1/i);cn}. For a separable Hilbert space E and an
orthonormal basis {e;}, . the linear operator 7 such that T(e;) =e,/i, is
compact and its range is dense in E. Following Example 2.3(c), the set

N =1{B, {e} |ieN},

where B is the closure of T(B), forms a Korovkin system for (% (E), B),
where B ={B}. We choose # = {B}. The cone

Crou(X, bx(E))=co(Cu(E))

consists of all sequences (4;);.n of non-empty compact convex subsets of
E converging to {0} with respect to the Hausdorff metric, endowed with
the topology of uniform convergence. Using the above insertions for ./Z,
N, &, and #, Theorem 3.3 describes a suitable Korovkin system for
Co(C(E)).

For a concrete approximation process, let P, denote the orthogonal
projection of E onto the span of {ey, ..., e,}, and for 4 €%y (E) set

P,(A)={P,(a)|ac A} eCx(E).
We abbreviate B, for P,(B) and observe that B,cBc B, +(1/n)B.
Now we define linear operators 7, on c¢o(%yx(E)) as follows: For

(A)ien ECo(Bp(E)) set

Tn((Ai)ieN) = (Pn(Ai+Ai+n))ieN'
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These operators satisfy (C"), as for all (4;);cn» (C))ien € Co(Gn(E))
A;cC;+B for all ieN
implies
P,(A4;+A4;,,) <P, (C;+C;y,)+2B  forall ieN.

We claim that 7,((A4;)) converges to (A;) for all (4;) € cq(%x(E)). For the
sequences in our Korovkin system we have for k=1,2,3

() V(L 1,
<<zk >>‘<<zk+<z+n>k> >

thus for every ie N

<l+ ! >B lB-l-l[EB
L c-Ba4-—
i (i+n)k) " ik n

and

1B <1+ ! >B -I—lB
i L B
i* i (i+n)*)"" " n

This shows convergence of the operators 7, toward the identity for the
sequences in .# ® %. This convergence is obvious for the sequences
({ex/i})ien In & ® A, hence our claim follows.
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