Korovkin Approximation for Weighted Set-Valued Functions

Walter Roth

Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan 2028, Brunei E-mail: roth@ubd.edu.bn

Communicated by Manfred v. Golitschek

Received May 19, 1997; accepted in revised form November 5, 1998

We investigate an approximation problem in weighted spaces of continuous functions whose domain is a locally compact Hausdorff space and whose values are non-empty compact convex subsets of a locally convex space. We prove a Korovkin type approximation theorem for monotone linear operators on such spaces and generalize results from earlier work which deals with compact domains and compact convex subsets of a Frechét space, resp. of \mathbb{R}^n . © 1999 Academic Press

Key Words: Korovkin type theorems; set-valued functions.

1. WEIGHTED SPACES OF REAL-VALUED FUNCTIONS

Throughout this paper, let X be a locally compact Hausdorff space and C(X) the space of all continuous real-valued functions on X. A function $f: X \to \mathbb{R}$ is said to vanish at infinity if for every $\varepsilon > 0$ the set $\{x \in X \mid |f(x)| \ge \varepsilon\}$ is relatively compact in X. According to Nachbin [8] and Prolla [9] a family \mathcal{W} of non-negative upper semicontinuous functions on X is called a *family of weights* if for all $w_1, w_2 \in \mathcal{W}$ there are $w_3 \in \mathcal{W}$ and $\rho > 0$ such that $w_1 \le \rho w_3$ and $w_2 \le \rho w_3$. With any family of weights \mathcal{W} we associate the subspace of C(X)

 $C_{\mathscr{W}}(X) = \{ f \in C(X) \mid wf \text{ vanishes at infinity for all } w \in \mathscr{W} \}.$

Together with the locally convex topology generated by the seminorms

$$p_w(f) = \sup \left\{ |wf(x)| \mid x \in X \right\}$$

for $w \in \mathcal{W}$ and $f \in C_{\mathcal{W}}(X)$ we call $C_{\mathcal{W}}(X)$ a weighted space of functions. We shall mention a few examples and refer to [8–10] for details.

1.1. EXAMPLES. (a) If \mathscr{W} consists of the constant function $w \equiv 1$, then $C_{\mathscr{W}}(X) = C_0(X)$, the space of all functions in C(X) that vanish at infinity, endowed with the supremum norm.

(b) If $\mathscr{W} = C_0^+(X) = \{w \in C_0(X) \mid w \ge 0\}$, then $C_{\mathscr{W}}(X) = C_B(X)$, the space of all bounded functions in C(X). The weighted topology (called the *strict* topology) is generally coarser than the supremum norm topology on $C_B(X)$.

(c) If \mathscr{W} consists of the characteristic functions of all compact subsets of X, then $C_{\mathscr{W}}(X) = C(X)$ with the topology of compact convergence.

(d) If \mathscr{W} consists of the characteristic functions of all finite subsets of X, then $C_{\mathscr{W}}(X) = C(X)$ with the topology of pointwise convergence.

(e) If $\mathscr{W} = C^+(X) = \{w \in C(X) \mid w \ge 0\}$, then $C_{\mathscr{W}}(X) = C_c(X)$, the space of all functions with compact support in C(X). The weighted topology is generally finer than the supremum norm but coarser than the inductive limit topology on $C_c(X)$.

The weighted spaces $C_{\mathscr{W}}(X)$ are endowed with the pointwise order for functions. Korovkin type theorems deal with approximation processes modeled by equicontinuous nets $(T_{\alpha})_{\alpha \in \mathscr{A}}$ of positive linear operators $T_{\alpha}: C_{\mathscr{W}}(X) \to C_{\mathscr{W}}(X)$. For a subset \mathscr{M} of $C_{\mathscr{W}}(X)$, the *Korovkin closure* $\mathscr{K}(\mathscr{M})$ of \mathscr{M} consists of all functions $f \in C_{\mathscr{W}}(X)$ such that $T_{\alpha}(f)$ converges to f in the weighted topology of $C_{\mathscr{W}}(X)$ whenever $(T_{\alpha})_{\alpha \in \mathscr{A}}$ is an equicontinuous net of positive linear operators on $C_{\mathscr{W}}(X)$ and $T_{\alpha}(m)$ converges to m for all $m \in \mathscr{M}$.

We shall cite Theorem 2.1 from [10]. For the special case of $C_0(X)$ with the supremum norm, i.e., the case of our Example 1.1(a), it is due to Bauer and Donner [2]. By span(\mathcal{M}) we denote the linear span of \mathcal{M} , by $M_B(X)$ the space of all finite regular Borel measures on X, and by $M_B^+(X)$ the positive cone in $M_B(X)$. We set

$$X_0 = \{ x \in X \mid w(x) > 0 \text{ for some } w \in \mathcal{W} \}.$$

1.2. THEOREM. Let X be a locally compact Hausdorff space, and let \mathscr{W} be a family of weight functions on X. Let \mathscr{M} be a subset of $C_{\mathscr{W}}(X)$. For a function $f \in C_{\mathscr{W}}(X)$ the following are equivalent:

(a)
$$f \in \mathcal{K}(\mathcal{M})$$
.

(b) For every $x \in X_0$

$$f(x) = \sup_{\substack{w \in \mathscr{W} \\ \varepsilon > 0}} \inf \{ m(x) \mid m \in \operatorname{span}(\mathscr{M}), wf \leq wm + \varepsilon \}$$
$$= \inf_{\substack{w \in \mathscr{W} \\ \varepsilon > 0}} \sup \{ m(x) \mid m \in \operatorname{span}(\mathscr{M}), wm \leq wf + \varepsilon \}$$

(c) For every $x \in X_0$, $\phi \in M_B^+(X)$ and $w \in \mathcal{W}$

$$\int_{X} wm \, d\phi = m(x) \qquad for \ all \quad m \in \mathcal{M} \quad implies \quad \int_{X} wf \, d\phi = f(x).$$

A brief inspection of the proof in [10] reveals that for the validity of the implications (b) \Leftrightarrow (c) \Leftrightarrow (a) the operators T_{α} need to be defined only on a subcone $D_{\mathscr{W}}(X)$ of $C_{\mathscr{W}}(X)$ that contains both \mathscr{M} and the function f. The requirements for operators on a cone, however, need to be adapted as follows: Linearity means that an operator $T: D_{\mathscr{W}}(X) \to C_{\mathscr{W}}(X)$ is additive and positively homogeneous. Continuity and monotony are combined in the following condition:

(C) For every $w \in \mathcal{W}$ there are $w' \in \mathcal{W}$ and $\rho > 0$ such that for all $f, g \in D_{\mathcal{W}}(X)$

 $wT_{\alpha}(f) \leq wT_{\alpha}(g) + 1$ whenever $w'f \leq w'g + \rho$.

Equicontinuity for a net $(T_{\alpha})_{\alpha \in A}$ of such operators means that the weight function w' and the constant $\rho > 0$ may be chosen simultaneously for all operators T_{α} . Any linear operator satisfying (C) may be extended to the linear span of $D_{\mathscr{W}}(X)$ under preservation of (C). We refer to [7] for a systematical introduction of continuous linear operators on (locally convex) cones.

A Korovkin system for $D_{\mathscr{W}}(X)$ is a subset \mathscr{M} of $D_{\mathscr{W}}(X)$ such that $D_{\mathscr{W}}(X) \subset \mathscr{K}(\mathscr{M})$. Condition (c) of Theorem 1.2 yields the following criterion which is a reformulation of Corollary 2.3 in [10]:

1.3. PROPOSITION. Let \mathcal{M} be a subset of $C_{\mathcal{W}}(X)$. Suppose that \mathcal{M} contains a function that does not vanish on all of X_0 and that for every pair of distinct points $x, y \in X_0$ there is $m_{x,y} \in \text{span}(\mathcal{M})$ such that

 $m_{x, y} \ge 0$ on X_0 , $m_{x, y}(x) = 0$, and $m_{x, y}(y) > 0$.

Then \mathcal{M} is a Korovkin system for $C_{\mathcal{W}}(X)$.

We shall say that a subset \mathscr{E} of non-negative functions in $C_{\mathscr{W}}(X)$ is a *unit family* if for every $x \in X_0$ there is $e_x \in \mathscr{E}$ such that $e_x(x) > 0$. A subset $\mathscr{G} \subset C_{\mathscr{W}}(X)$ separates the points of X_0 if for all $x \neq y \in X_0$ there is $s \in \mathscr{G}$ such that $s(x) \neq s(y)$. For any pair of such families \mathscr{E} and \mathscr{G} the functions

$$\mathcal{M} = \left\{ e, es, es^2 \mid e \in \mathscr{E}, s \in \mathscr{S} \right\}$$

fulfill the above criterion, hence form a Korovkin system for $C_{\mathscr{W}}(X)$: \mathscr{E} contains a non-zero function, and the condition in Proposition 1.3 is satisfied by functions

$$y \mapsto e(y)(s(y) - s(x))^2$$
.

For X = [0, 1], $\mathscr{W} = \{1\}$, $\mathscr{E} = \{1\}$, and $\mathscr{S} = \{x\}$ this leads to the classical Korovkin system $\mathscr{M} = \{1, x, x^2\}$ for C([0, 1]). Many more examples may be found in [1, 2, 10]. Furthermore, condition (b) of Theorem 1.2 yields a Stone–Weierstrass type result (Corollary 2.2 in [10]): The vector sublattice generated by a Korovkin system \mathscr{M} for $C_{\mathscr{W}}(X)$ is seen to be dense in $C_{\mathscr{W}}(X)$ with respect to its weighted topology.

2. REPRESENTATIONS OF COMPACT CONVEX SETS

In the following, let *E* be a real locally convex topological vector space, *E'* its dual endowed with the weak* topology. For a subset *A* of *E*, its *polar* in *E'* is $A^{\circ} = \{\mu \in E' \mid \mu(a) \leq 1 \text{ for all } a \in A\}$. The polar in *E* of a subset of *E'* is correspondingly defined. We consider the usual addition and multiplication of sets.

Let \mathfrak{V} be a family (not necessarily a base) of closed convex neighborhoods of the origin in *E*, directed downward for set inclusion. A subset *A* of *E* is said to be *precompact relative to* \mathfrak{V} if for all $V \in \mathfrak{V}$ and $\varepsilon > 0$ there are $a_1, ..., a_n \in A$ such that

$$A \subset \bigcup_{i=1}^{n} (a_i + \varepsilon V).$$

We shall denote the cone of all non-empty convex subsets of E that are precompact relative to \mathfrak{V} by $\mathscr{C}_{\mathfrak{B}}(E)$ and by $\mathscr{D}_{\mathfrak{B}}(E)$ any subcone thereof. Every $A \in \mathscr{C}_{\mathfrak{V}}(E)$ is bounded relative to \mathfrak{V} , that is for every $V \in \mathfrak{V}$ there is $\rho > 0$ such that $A \subset \rho V$.

We proceed to represent the elements of $\mathscr{C}_{\mathfrak{B}}(E)$ as continuous realvalued functions on a suitable locally compact Hausdorff space Y. For a fixed $V \in \mathfrak{B}$ let

$$Y_{V} = \{(\mu, V) \mid 0 \neq \mu \in V^{\circ}\},\$$

endowed with the weak topology of the injection

$$(\mu, V) \mapsto \mu : Y_V \to E'.$$

Thus Y_V is homeomorphic to $V^{\circ} \setminus \{0\}$ and therefore locally compact and Hausdorff. Now let

$$Y = \bigoplus_{V \in \mathfrak{B}} Y_V$$

be the topological sum of the disjoint spaces Y_V . A subset of Y is open (closed) if any only if its intersection with every Y_V is open (closed) in Y_V . As a sum of locally compact Hausdorff spaces Y is itself locally compact and Hausdorff.

Now with every set $A \in \mathscr{C}_{\mathfrak{B}}(E)$ we associate a real-valued function f_A on Y defined by

$$f_A(\mu, V) = \sup \{\mu(a) \mid a \in A\}$$

for all $(\mu, V) \in Y$. This function is seen to be continuous on Y, as for any fixed $V \in \mathfrak{V}$ and $\varepsilon > 0$ there are $a_1, ..., a_n \in A$ such that $A \subset \bigcup_{i=1}^n (a_i + \varepsilon U)$. The function $f'(\mu, V) = \max_{i=1}^n \mu(a_i)$ is obviously continuous on Y_V and

$$f'(\mu, V) \leq f_A(\mu, V) \leq f'(\mu, V) + \varepsilon$$

holds whenever $\mu \in V^{\circ}$. This shows that f_A itself is continuous on Y_V . But continuity an all of the spaces Y_V implies continuity on their topological sum. Next we observe that the mapping

$$A \mapsto f_A \colon \mathscr{C}_{\mathfrak{B}}(E) \to C(Y)$$

is additive and positively homogeneous, i.e. $f_{A+B} = f_A + f_B$ and $f_{\alpha A} = \alpha f_A$ for all $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$ and $\alpha \ge 0$. If C is the convex hull of the sets $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$, then f_C is the (pointwise) maximum of the functions f_A and f_B . Furthermore, if $V \in \mathfrak{B}$ and v denotes the characteristic function on Y of the subset Y_V , then for $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$ and $\rho \ge 0$

$$vf_A \leq vf_B + \rho$$
 if and only if $A \subset B + \rho' V$ for all $\rho' > \rho$.

To verify this claim, let $A \subset B + \rho' V$ for any $\rho' > \rho$. Then for all $a \in A$ there are $b \in B$ and $v \in V$ such that $a = b + \rho' v$, hence $\mu(a) \leq \mu(b) + \rho'$ for all $\mu \in V^\circ$. This shows $f_A(\mu, V) \leq f_B(\mu, V) + \rho'$ for all $(\mu, V) \in Y_V$. If on the other hand $A \not\subset B + \rho' V$ for some $\rho' > \rho$, then $a \notin B + \rho' V$ for some $a \in A$, that is $(a - B) \cap \rho' V = \emptyset$. By the Hahn–Banach separation theorem there is $\mu \in E'$ such that $\mu(\rho' v) \leq \rho' \leq \mu(a) - \mu(b)$ for all $v \in V$ and $b \in B$. This shows $0 \neq \mu \in V^\circ$. Then $(\mu, V) \in Y_V$ and $\rho' \leq f_A(\mu, V) - f_B(\mu, V)$. Thus $f_A(\mu, V) > f_B(\mu, V) + \rho$, indeed.

The embedding $A \mapsto f_A$ is therefore monotone if we endow $\mathscr{C}_{\mathfrak{B}}(E)$ with the set inclusion as order, and one-to-one on every subcone $\mathscr{D}_{\mathfrak{B}}(E)$ of $\mathscr{C}_{\mathfrak{B}}(E)$ whose elements are closed sets in the topology on E that is created by the neighborhoods in \mathfrak{B} .

For every $V \in \mathfrak{V}$ the set Y_V is both open and closed in Y. Its characteristic function v is therefore continuous on Y. Moreover, for every $A \in \mathscr{C}_{\mathfrak{B}}(E)$ the function vf_A vanishes at infinity. Indeed, if $f_A(\mu, V) \ge \varepsilon$ for some $\varepsilon > 0$, then $(\mu, V) \in Y_V$ and the continuity of the function f_A on Y_V shows that the set $\{(\mu, V) \in Y_c | f_A(\mu, V) \ge \varepsilon\}$ is compact.

We may now introduce suitable weighted topologies on $\mathscr{C}_{\mathfrak{B}}(E)$: The set \mathscr{V} of characteristic functions v corresponding to the neighborhoods $V \in \mathfrak{B}$ is directed upward and forms a family of weights on Y. Via the embedding $A \mapsto f_A$ the cone $\mathscr{C}_{\mathfrak{B}}(E)$ may be considered as a subcone of $C_{\mathscr{V}}(Y)$. The weighted topology on $\mathscr{C}_{\mathfrak{B}}(E)$ corresponding to the weighted topology of $C_{\mathscr{V}}(Y)$ is induced by the semimetrics

$$d_V(A, B) = \inf \{ \rho \ge 0 \mid A \subset B + \rho V \text{ and } B \subset A + \rho V \}$$

for $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$ and $V \in \mathfrak{V}$. We call \mathfrak{V} a *family of weights on* $\mathscr{C}_{\mathfrak{B}}(E)$ and for any subcone $\mathscr{D}_{\mathfrak{B}}(E)$ of $\mathscr{C}_{\mathfrak{B}}(E)$ we call $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{V})$ a *weighted cone of sets*. Let us illustrate this with a few examples:

2.1. EXAMPLES. (a) If *E* is a normed space with unit ball \mathbb{B} and $\mathfrak{V} = \{\mathbb{B}\}$, then $\mathscr{C}_{\mathfrak{V}}(E)$ carries the topology of the *Hausdorff metric*

$$d_{\mathbb{B}}(A, B) = \inf \{ \rho \ge 0 \mid A \subset B + \rho \mathbb{B} \text{ and } B \subset A + \rho \mathbb{B} \}$$

for $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$.

(b) If *E* carries the weak topology induced by *E'*, that is \mathfrak{B} consists of the polars of all finite subsets of *E'*, then the corresponding weighted topology on $\mathscr{C}_{\mathfrak{B}}(E)$ is generated by the semimetrics

$$d_{\mu}(A, B) = |\sup_{a \in A} \mu(a) - \sup_{b \in B} \mu(b)|$$

for $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$ and $\mu \in E'$.

(c) Let *E* be an ordered normed space with unit ball \mathbb{B} , and for a convex subset *A* of *E* denote by D(A) the decreasing closed and convex hull of *A*, i.e., the closure of the set $\{b \in E \mid b \leq a \text{ for some } a \in A\}$. Then $\mathfrak{B} = \{D(\mathbb{B})\}$ induces the topology of the Hausdorff metric with respect to D(A) and D(B) for sets $A, B \in \mathscr{C}_{\mathfrak{B}}(E)$.

We may use the family of neighborhoods \mathfrak{V} to define an order relation on $\mathscr{C}_{\mathfrak{V}}(E)$: For elements $A, B \in \mathscr{C}_{\mathfrak{V}}(E)$ we denote

 $A \leq_{\mathfrak{B}} B$ if $A \subset B + \varepsilon V$ for all $V \in \mathfrak{V}$ and $\varepsilon > 0$.

This relation on $\mathscr{C}_{\mathfrak{B}}(E)$ is in general finer than the set inclusion. Via the embedding as singleton sets it induces an order on E. By

$$E'_{\mathfrak{B}} = \bigcup \left\{ \rho V^{\circ} \mid V \in \mathfrak{B}, \, \rho > 0 \right\}$$

we denote the polar in E' of the negative cone in this order on E. Its nonzero elements are those functionals $\mu \in E'$ such that $(\mu, V) \in Y$ for some $V \in \mathfrak{B}$.

In order to apply Theorem 1.2 we consider linear (i.e., additive and positively homogeneous) operators T on subcones $\mathscr{D}_{\mathfrak{B}}(E)$ of $\mathscr{C}_{\mathfrak{B}}(E)$ satisfying:

(C') For every $V \in \mathfrak{V}$ there are $V' \in \mathfrak{V}$ and $\rho > 0$ such that for all $A, B \in \mathscr{D}_{\mathfrak{V}}(E)$

$$T(A) \subset T(B) + V$$
 whenever $A \subset B + \rho V'$.

This requirement corresponds to condition (C) for the induced operators on the representation of $\mathscr{D}_{\mathfrak{B}}(E)$ as a subcone of $C_{\mathscr{V}}(Y)$. It combines continuity and monotony with respect to the order $\leq \mathfrak{B}$. Equicontinuity for a net $(T_{\alpha})_{\alpha \in \mathcal{A}}$ of such operators means that $V' \in \mathfrak{B}$ and $\rho > 0$ may be chosen simultaneously for all operators T_{α} .

Correspondingly, the Korovkin closure $\mathscr{K}(\mathscr{N})$ of a family $\mathscr{N} \subset \mathscr{D}_{\mathfrak{B}}(E)$ consists of all sets $A \in \mathscr{D}_{\mathfrak{B}}(E)$ such that $T_{\alpha}(A)$ converges to A, whenever $(T_{\alpha})_{\alpha \in \mathscr{A}}$ is an equicontinuous net of linear operators on $\mathscr{D}_{\mathfrak{B}}(E)$ satisfying (C'), and $T_{\alpha}(N)$ converges to N for all $N \in \mathscr{N}$. Convergence is meant in the weighted topology of $\mathscr{D}_{\mathfrak{B}}(E)$. If $\mathscr{K}(\mathscr{N}) = \mathscr{D}_{\mathfrak{B}}(E)$, then \mathscr{N} is a Korovkin system for $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{P})$. Using the representation of $\mathscr{D}_{\mathfrak{B}}(E)$ as a subcone of $C_{\mathscr{V}}(Y)$, we shall proceed to identify Korovkin systems:

Only singleton sets $\{a\} \in \mathscr{C}_{\mathfrak{B}}(E)$ have an additive inverse $\{-a\} \in \mathscr{C}_{\mathfrak{B}}(E)$, and $f_{\{-a\}} = -f_{\{a\}}$ holds for the representing functions in $C_{\mathscr{V}}(Y)$. For a subset \mathscr{N} of $\mathscr{C}_{\mathfrak{B}}(E)$ we define its *span* to be the subcone of $\mathscr{C}_{\mathfrak{B}}(E)$ generated by \mathscr{N} and the negatives of all singleton sets in \mathscr{N} . By $\overline{\operatorname{span}}(\mathscr{N})$ we denote the closure of this span with respect to the weighted topology of $(\mathscr{C}_{\mathfrak{B}}(E), \mathfrak{B})$.

For $\mu \in E'_{\mathfrak{B}}$, the half space

$$H_{\mu} = \{ a \in E \mid \mu(a) \leq 0 \}$$

is closed in *E* and decreasing with respect to the order $\leq \mathfrak{B}$. The following criterion for Korovkin systems in $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{B})$ corresponds to the criterion for Korovkin systems in $C_{\mathscr{W}}(X)$ in Proposition 1.3:

2.2. PROPOSITION. Let $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{V})$ be a weighted cone of sets, \mathscr{N} a subset of $\mathscr{D}_{\mathfrak{B}}(E)$. Suppose that for every $\mu \in E'_{\mathfrak{B}}$ the union of all sets $D_{\mathfrak{B}}(N)$, for $N \in \overline{\text{span}}(\mathscr{N})$ such that $0 \in D_{\mathfrak{B}}(N) \subset H_{\mu}$, is dense in H_{μ} . Then \mathscr{N} is a Korovkin system for $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{V})$.

Proof. We shall verify condition (c) from Theorem 1.2 for $C_{\mathscr{V}}(Y)$: Let $(\mu, V) \in Y$, that is, $0 \neq \mu \in E'_{\mathfrak{B}}$, and let $\phi \in M_B^+(Y)$ and $v \in \mathscr{V}$ such that $\int_Y v f_N d\phi = f_N(\mu, V)$ holds for all $N \in \mathscr{N}$, hence even for all $N \in \overline{\operatorname{span}}(\mathscr{N})$. For any $(v, U) \in Y$ there is either an element a in the interior of H_{μ} such that v(a) > 0, or $H_{\mu} \subset H_{\nu}$, hence v is a positive multiple of μ . In the first case, by our assumption we may find $a' \in H_{\mu}$ such that v(a') > 0 as well, and $a' \in N$ for some $N \in \overline{\operatorname{span}}(\mathscr{N})$ such that $0 \in D_{\mathfrak{V}}(N) \subset H_{\mu}$. We infer that the corresponding function f_N is non-negative on Y, $f_N(\mu, V) = 0$ and $f_N(v, U) \geq y(a') > 0$. As $\int_Y v f_N d\phi = 0$, this shows that any such point $(v, U) \in Y$ may not be contained in the support of the measure $v\phi$. This measure is therefore supported by the set

$$\{(v, U) \in Y \mid v = \lambda \mu \text{ for some } \lambda > 0\}.$$

But on this set any two functions f_A and f_B representing sets A and B in $\mathscr{D}_{\mathfrak{B}}(E)$ are proportional. The measure $v\phi$ therefore coincides on the representation of $\mathscr{D}_{\mathfrak{B}}(E)$ with a certain positive multiple $\rho \varepsilon_{(\mu, V)}$ of the point evaluation in (μ, V) . Now we use our assumption for $v = 0 \in E'_{\mathfrak{B}}$: There is $a \in H_0 = E$ such that $\mu(a) > 0$ and $a \in N$ for some $N \in \overline{\operatorname{span}}(\mathscr{N})$, hence $f_N(\mu, V) > 0$. But this yields $\int_Y v f_N d\phi = \rho \varepsilon_{(\mu, V)}(f_N) = f_N(\mu, V)$, demonstrating that $\rho = 1$, indeed.

2.3. EXAMPLES. (a) If $\overline{\text{span}}(\mathcal{N})$ contains the segments $\{\lambda a \mid 0 \leq \lambda \leq 1\}$ for all $a \in E$, then \mathcal{N} fulfills the criterion of Proposition 2.2, hence is a Korovkin system for $(\mathscr{C}_{\mathfrak{B}}(E), \mathfrak{B})$ for any choice of the family of weights \mathfrak{B} .

(b) For $E = \mathbb{R}^n$ with the unit vectors e_i and the Euclidean unit ball \mathbb{B} , the family

$$\mathcal{N} = \{ \mathbb{B}, \{ e_i \} \mid i = 1, ..., n \}$$

forms a Korovkin system for $(\mathscr{C}_{\mathfrak{B}}(\mathbb{R}^n), \mathfrak{B})$, where $\mathfrak{B} = \{\mathbb{B}\}$. This is a special case of the following:

(c) Let *E* be a separable real Hilbert space with the inner product \langle , \rangle and unit ball \mathbb{B} . Let $T: E \to E$ be a compact linear operator whose

range is dense in *E*. The closure *B* of $T(\mathbb{B})$ is compact and convex. Let $\{e_i\}_{i \in \mathbb{N}}$ be an orthonormal basis for *E*. We claim that the family

$$\mathcal{N} = \{B, \{e_i\} \mid i \in \mathbb{N}\}$$

forms a Korovkin system for $(\mathscr{C}_{\mathfrak{B}}(E), \mathfrak{B})$, where $\mathfrak{B} = \{\mathbb{B}\}$. We shall verify the criterion of Proposition 2.2.

For $0 \neq y \in E$, let $H_y = \{a \in E \mid \langle a, y \rangle \leq 0\}$ be a closed half space in *E*. The adjoint operator T^* of *T* is one-to-one, as the range of *T* is dense in *E*, hence $T^*(y) \neq 0$, and we set

$$b_0 = ||T^*(y)||^{-1} T(T^*(y)) \in B.$$

As for all $b \in \mathbb{B}$

$$\langle T(b), y \rangle = \langle b, T^*(y) \rangle \leq ||T^*(y)|| = \langle b_0, y \rangle,$$

we infer that

$$\langle b_0, y \rangle = \max\{\langle b, y \rangle \mid b \in B\},\$$

hence $0 \in N = B - b_0 \subset H_y$. Clearly $N \in \overline{\text{span}}(\mathcal{N})$. Now a simple Hahn-Banach argument shows that the union of all positive multiples of N is indeed dense in H_y : Let $x \in E$ such that $\langle n, x \rangle \leq 0$ for all $n \in N$, i.e. $\langle b, x \rangle \leq \langle b_0, x \rangle$ for all $b \in B$. The choice of

$$b = ||T^*(x)||^{-1} T(T^*(x)) \in B,$$

for the above, together with the Cauchy-Schwarz inequality yields

$$||T^*(x)|| \le ||T^*(x)||^{-1} \langle T^*(y), T^*(x) \le ||T^*(x)||.$$

But equality shows that the vectors $T^*(y)$ and $T^*(x)$ are linearly dependent, and as T^* is one-to-one, we infer that x is a multiple of y. Again using the density of the range of T, we conclude that this multiple is non-negative, and $\langle c, x \rangle \leq 0$ holds for all $c \in H_y$. Therefore H_y is contained in the closed subcone of E generated by N.

For $H_0 = E$ we choose $N = B \in \mathcal{N}$ and observe that by our assumption on T the union of all positive multiples of B is dense in E.

(d) Let *E* be a real reflexive Banach space with unit ball \mathbb{B} . The norm on *E* is *smooth* if every point in the boundary of \mathbb{B} is supported by a unique closed hyperplane (cf. [5, 20F]). In this case, let \mathfrak{V} be a

neighborhood base for the weak topology on E induced by E'. Then $\mathbb{B} \in \mathscr{C}_{\mathfrak{B}}(E)$. Let S be a total subset (i.e. the span of S is dense) of E. Then the family

$$\mathcal{N} = \{ \mathbb{B}, \{e\} \mid e \in \mathcal{S} \}$$

forms a Korovkin system for $(\mathscr{C}_{\mathfrak{B}}(E), \mathfrak{V})$. We shall verify the criterion of Proposition 2.2.

For $0 \neq \mu \in E'$ let $H_{\mu} = \{a \in E \mid \mu(a) \leq 0\}$ be a closed half space in E. There is b_0 in the boundary of \mathbb{B} such that

$$\mu(b_0) = \max\{\mu(b) \mid b \in B\},\$$

hence $0 \in N = B - b_0 \subset H_{\mu}$ and $N \in \overline{\text{span}}(\mathcal{N})$. As there is no other closed hyperplane H in E with this property, the union of all positive multiples of N is seen to be dense in H_{μ} . For $H_0 = E$ we choose all multiples of $N = \mathbb{B} \in \mathcal{N}$.

Examples of smoothly normed reflexive Banach spaces are integration spaces $L^{p}(X, \mu)$ for 1 .

(e) For $E = \mathbb{R}$ and $\mathfrak{V} = \{(-\infty, 1]\}$, all bounded above intervals in \mathbb{R} are precompact relative to \mathfrak{V} , hence contained in $\mathscr{C}_{\mathfrak{V}}(\mathbb{R})$. A Korovkin system for $(\mathscr{C}_{\mathfrak{V}}(\mathbb{R}), \mathfrak{V})$ is given by $\mathscr{N} = \{(-\infty, 1]\}$.

2.4. Remark. Readers familiar with the theory of locally convex cones as developed in [7] will realize that a similar representation may be used in this more general situation: A locally convex cone (P, V) may be embedded in a full cone (\tilde{P}, V) that contains all neighborhoods as elements. The dual cone of \tilde{P} is locally compact in its weak* topology and serves as the domain for a suitable weighted space of real valued functions $C_{\mathscr{V}}(Y)$. The weight functions are the characteristic functions of the polars of neighborhoods. If all its elements are bounded, then P is canonically represented as a subcone of $C_{\mathscr{V}}(Y)$.

3. WEIGHTED CONES OF SET-VALUED FUNCTIONS

As before, let X be a locally compact Hausdorff space and \mathcal{W} a family of weights on X. Let E be a real locally convex topological vector space and \mathfrak{V} a family of closed convex neighborhoods of the origin in E, directed downward for set inclusion. Let $\mathscr{C}_{\mathfrak{V}}(E)$ be the cone of all non-empty convex subsets of E that are precompact relative to $\mathfrak{V}, \mathcal{D}_{\mathfrak{V}}(E)$ a subcone of $\mathscr{C}_{\mathfrak{V}}(E)$. A function $F: X \to \mathscr{D}_{\mathfrak{B}}(E)$ is *continuous at* $x_0 \in X$ if for every $V \in \mathfrak{B}$ and $\varepsilon > 0$ there is a neighborhood U of x_0 such that $d_V(F(x), F(x_0)) \leq \varepsilon$, that is,

$$F(x) \subset F(x_0) + \varepsilon V$$
 and $F(x_0) \subset F(x) + \varepsilon V$

for all $x \in U$. Let $C(X, \mathcal{D}_{\mathfrak{B}}(E))$ denote the cone of all such functions that are continuous on X. Given $V \in \mathfrak{B}$, we say that a function $F: X \to \mathcal{D}_{\mathfrak{B}}(E)$ vanishes at infinity relative to V if for every $\varepsilon > 0$ the set $\{x \in X \mid F(x) \neq \varepsilon V\}$ is relatively compact in X. Accordingly, we denote by $C_{\mathcal{W} \otimes \mathfrak{B}}(X, \mathcal{D}_{\mathfrak{B}}(E))$ the cone of all functions $F \in C(X, \mathcal{D}_{\mathfrak{B}}(E))$ such that wF vanishes at infinity relative to V for all $V \in \mathfrak{B}$ and $w \in \mathcal{W}$. The weighted topology on $C_{\mathcal{W} \otimes \mathfrak{B}}(X, \mathcal{D}_{\mathfrak{B}}(E))$ is induced by the semimetrics

$$d_{w, V}(F, G) = \sup_{x \in X} \{ w(x) \, d_V(F(x), G(x)) \}$$

for $F, G \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$, $w \in \mathscr{W}$ and $V \in \mathfrak{B}$. We call $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ a weighted cone of set-valued functions. Simple compactness arguments show that for any real-valued function $f \in C_{\mathscr{W}}(X)$ and a set $A \in \mathscr{D}_{\mathfrak{B}}(E)$ the set-valued function

$$x \mapsto f(x) A$$

belongs to $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$. For any function $F \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$, all $w \in \mathscr{W}, V \in \mathfrak{B}$, and $\varepsilon > 0$ one may find a set $C \in \mathscr{C}_{\mathfrak{B}}(E)$ such that

$$w(x) F(x) \subset C + \varepsilon V$$
 for all $x \in X$.

For Korovkin type approximation problems we consider linear (i.e., additive and positively homogeneous) operators T on $C_{\mathscr{W}\otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ satisfying

(C") For all $w \in \mathcal{W}$ and $V \in \mathfrak{V}$ there are $w' \in \mathcal{W}$, $V' \in \mathfrak{V}$ and $\rho > 0$ such that for all $F, G \in C_{\mathcal{W} \otimes \mathfrak{V}}(X, \mathscr{D}_{\mathfrak{B}}(E))$

$$w(x) T(F)(x) \subset w(x) T(G)(x) + V \quad for \ all \quad x \in X,$$

whenever

$$w'(x) F(x) \subset w'(x) G(x) + \rho V'$$
 for all $x \in X$,

Evidently, this condition combines continuity and monotony. Equicontinuity for a net $(T_{\alpha})_{\alpha \in A}$ of such operators means that w', V' and ρ may be chosen simultaneously for all operators T_{α} . For a subset \mathscr{L} of $C_{\mathscr{W}\otimes\mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$, the Korovkin closure $\mathscr{K}(\mathscr{L})$ of \mathscr{L} consists of all functions $F \in C_{\mathscr{W}\otimes\mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ such that $T_{\alpha}(F)$ converges to F, whenever $(T_{\alpha})_{\alpha \in \mathscr{A}}$ is an equicontinuous net of linear operators on $C_{\mathscr{W}\otimes\mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ satisfying (\mathbb{C}'') , and $T_{\alpha}(L)$ converges to L for all $L \in \mathscr{L}$. Convergence is meant in the weighted topology of $C_{\mathscr{W}\otimes\mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$.

We shall use the representation of $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{V})$ as a subcone of $C_{\mathscr{V}}(Y)$ in order to represent $C_{\mathscr{W}\otimes\mathfrak{V}}(X, \mathscr{D}_{\mathfrak{V}}(E))$ as a subcone of a weighted space of real-valued functions on $X \times Y$. We begin with some general observations.

For real-valued functions f on X and g on Y we shall denote by $f \otimes g$ the function $(x, y) \mapsto g(x) f(y)$ on $X \times Y$. For sets \mathcal{M} and \mathcal{N} of real-valued functions on X and Y we set

$$\mathcal{M} \otimes \mathcal{N} = \{ m \otimes n \mid m \in \mathcal{M}, n \in \mathcal{N} \}.$$

The function $f \otimes g$ is continuous on $X \times Y$ if both f and g are continuous on X and Y, upper resp. lower semicontinuous if both f and g are upper resp. lower semicontinuous and non-negative. Thus, if \mathcal{W} and \mathcal{V} are families of weights on X and Y respectively, then $\mathcal{W} \otimes \mathcal{V}$ is a family of weights on $X \times Y$. It is straightforward to check that

$$C_{\mathscr{W}}(X) \otimes C_{\mathscr{V}}(Y) \subset C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y).$$

For the seminorms on $C_{\mathcal{W} \otimes \mathcal{V}}(X \times Y)$, note that

$$p_{w\otimes v}(f\otimes g) = p_w(f) \ p_v(g).$$

As before we denote by

$$X_0 = \{x \in X \mid w(x) > 0 \text{ for some } w \in \mathcal{W}\}$$

and

$$Y_0 = \{ y \in Y \mid v(y) > 0 \text{ for some } v \in \mathscr{V} \}.$$

For compact spaces X and Y and the unit families $\mathscr{E} = \{1\}$ and $\mathscr{F} = \{1\}$ the following may be found in [6]:

3.1. THEOREM. Let X and Y be locally compact Hausdorff spaces, \mathscr{W} and \mathscr{V} families of weights on X and Y, respectively. Let \mathscr{M} be a Korovkin system, \mathscr{E} a unit family for $C_{\mathscr{W}}(X)$. Let \mathscr{N} be a subset, \mathscr{F} a unit family for $C_{\mathscr{V}}(Y)$. Set

$$\mathscr{L} = (\mathscr{M} \otimes \mathscr{F}) \cup (\mathscr{E} \otimes \mathscr{N}).$$

If for $F \in C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$ the functions $y \mapsto F(x, y)$ are in $\mathscr{H}(\mathscr{N})$ for every $x \in X_0$, then $F \in \mathscr{H}(\mathscr{L})$. In particular, if \mathscr{N} is a Korovkin system for $C_{\mathscr{V}}(Y)$, then \mathscr{L} is a Korovkin system for $C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$.

Proof. We shall verify condition (c) in Theorem 1.2. Let $(x_0, y_0) \in X_0 \times Y_0$, and let $\phi \in M_B^+(X \times Y)$ and $w \otimes v \in \mathcal{W} \otimes \mathcal{V}$ such that

$$\int_{X \times Y} (w \otimes v) L \, d\phi = L(x_0, y_0) \quad \text{for all} \quad L \in \mathscr{L}.$$

For any non-negative function $f \in \text{span}(\mathcal{F})$ such that $f(y_0) = 1$, the mapping

$$g \mapsto g \otimes f \colon C_{\mathscr{W}}(X) \to C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$$

is an embedding that preserves the seminorms of $C_{\mathscr{W}}(X)$, as for $w' \otimes v' \in \mathscr{W} \otimes \mathscr{V}$ we have $p_{w' \otimes v'}(g \otimes f) = p_{w'}(g) p_{v'}(f)$, and as $p_{v'}(f) > 0$ for some $v' \in V$. Thus

$$g \mapsto \int_{X \times Y} (w \otimes v)(g \otimes f) \, d\phi$$

defines a continuous positive linear functional on $C_{\mathscr{W}}(X)$ which coincides with the point evaluation in x_0 on the Korovkin system \mathscr{M} , hence on all of $C_{\mathscr{W}}(X)$ by Theorem 1.2(c). Now for any $x_0 \neq x \in X$ there is a nonnegative function $g \in C_{\mathscr{W}}(X)$ such that $g(x) > g(x_0) = 0$, and for any $y \in Y_0$ there is a non-negative function $f \in \operatorname{span}(\mathscr{F})$ such that $f(y_0) = 1$ and f(y) > 0. The above shows that none of these points (x, y) may be in the support of the Borel measure $(w \otimes v) \phi$. As v(y) = 0 for the remaining points $y \in Y$, we realize that this measure is in fact supported by the set $\{x_0\} \times Y \subset X \times Y$. Next we choose a non-negative function $e \in \operatorname{span}(\mathscr{E})$ such that $e(x_0) = 1$. The mapping

$$g \mapsto e \otimes g : C_{\mathscr{V}}(Y) \mapsto C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$$

is an embedding that preserves the seminorms of $C_{\mathscr{V}}(Y)$, and

$$g \mapsto \int_{X \times Y} (w \otimes v)(e \otimes g) \ d\phi$$

is a continuous positive linear functional on $C_{\mathscr{V}}(Y)$ that evaluates as $n(y_0)$ for all $n \in \mathscr{N}$. Thus, as the function f, mapping $y \mapsto F(x_0, y)$, is contained

in $\mathscr{K}(\mathscr{N})$, and as the functions F and $e \otimes f$ coincide on the set $\{x_0\} \times Y$, we have

$$\int_{X \times Y} (w \otimes v) F d\phi = \int_{x \times Y} (w \otimes v) (e \otimes f) d\phi = f(y_0) = F(x_0, y_0)$$

indeed.

For our purposes we choose the locally compact space Y and the family \mathscr{V} weight functions corresponding to the neighborhood system \mathfrak{B} as in Section 2. With every set-valued function $F \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ we associate the real-valued function f_F on $X \times Y$ such that for $x \in X$ and $y = (\mu, V) \in Y$

$$f_F(x, y) = f_{F(x)}(\mu, V) = \sup \{ \mu(a) \mid a \in F(x) \}.$$

We first verify that f_F is continuous on $X \times Y$: Let $x_0 \in X$ and $y_0 = (\mu, V) \in Y$. Given $\varepsilon > 0$, from the continuity of the function $f_{F(x_0)}$ on Y we infer that there is a neighborhood $U_Y \subset Y_V$ of y_0 such that

$$|f_F(x_0, y) - f_F(x_0, y_0)| = |f_{F(x_0)}(y) - f_{F(x_0)}(y_0)| \le \varepsilon/2$$

holds for all $y \in U_Y$. Likewise, using the neighborhood $V \in \mathfrak{V}$ from above, there is a neighborhood U_X of x_0 such that

$$d_V(F(x), F(x_0)) \leq \varepsilon/2$$

for all $x \in U_X$. Then for all $(x, y) \in U_X \times U_Y$

$$|f_F(x, y) - f_F(x_0, y)| = |f_{F(x)}(\mu, V) - f_{F(x_0)}(\mu, V)| \le \varepsilon/2.$$

Thus

$$\begin{split} |f_F(x, y) - f_F(x_0, y_0)| &\leq |f_F(x, y) - f_F(x_0, y)| + |f_F(x_0, y) - f_F(x_0, y_0)| \\ &\leq \varepsilon. \end{split}$$

Next we shall show that f_F belongs to $C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$ whenever F belongs to $C_{\mathscr{W} \otimes \mathfrak{V}}(X, \mathscr{D}_{\mathfrak{B}}(E))$. Indeed, for $w \in \mathscr{W}$, the weight function $v \in \mathscr{V}$ corresponding to $V \in \mathfrak{B}$ and $\varepsilon > 0$,

$$(w \otimes v) f_F(x, y) = v(y) w(x) f_{F(x)}(y) \ge \varepsilon$$

for $(x, y) \in X \times Y$ implies that $y = (\mu, V) \in Y_V$, hence $\mu \in V^\circ$ and $w(x) F(x) \neq (\varepsilon/2) V$. Therefore x belongs to the relatively compact subset

$$X_c = \{ x \in X \mid w(x) \ F(x) \neq (\varepsilon/2) \ V \}$$

of X. As mentioned before, one may find $C \in \mathscr{C}_{\mathfrak{B}}(E)$ such that $w(x) F(x) \subset C + (\varepsilon/2) V$ for all $x \in X$. Accordingly,

$$\varepsilon \leq v(y) w(x) f_{F(x)}(y) \leq f_C(y) + \varepsilon/2$$

shows that y belongs to

$$Y_c = \{ (v, V) \in Y_V \mid f_C(y) \ge \varepsilon/2 \}.$$

This set is compact, as f_c is continuous on Y, demonstrating that (x, y) belongs to the relatively compact product $X_c \times Y_c$, indeed. The embedding

$$F \mapsto f_F \colon C_{\mathscr{W} \otimes \mathfrak{V}}(X, \mathscr{D}_{\mathfrak{B}}(E)) \to C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$$

is additive, positively homogeneous, and monotone if we endow $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ with the order of pointwise set inclusion. Furthermore, for $F, G \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ and $\rho \ge 0$ we have

$$(w \otimes v) f_F(x, y) \leq (w \otimes v) f_G(x, y) + \rho$$

for all $(x, y) \in X \times Y$ if and only if

$$w(x) F(x) \subset w(x) G(x) + \rho' V$$

for all $x \in X$ and $\rho' > \rho$. Thus, linear operators on $C_{\mathscr{W} \otimes \mathfrak{V}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ satisfying (C") correspond to linear operators on a subcone of $C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$ satisfying (C).

Propositions 1.3 and 2.2 provide criteria to identify Korovkin systems in $C_{\mathscr{W}}(X)$ and $\mathscr{D}_{\mathfrak{B}}(E)$, the latter being identified with a subcone of $C_{\mathscr{V}}(Y)$. Unit families in $C_{\mathscr{W}}(X)$ are obvious and may consist of a single strictly positive function. A unit family \mathscr{F} in $\mathscr{D}_{\mathfrak{B}}(E)$ consists of sets $F \in \mathscr{D}_{\mathfrak{B}}(E)$ such that $0 \in D_{\mathfrak{B}}(F)$. This guarantees that the function f_F is non-negative on Y. We require that for every $y = (\mu, V) \in Y$ there is $F \in \mathscr{F}$ such that $f_F(y) > 0$. The latter holds in particular if the union of all non-negative multiplies of the sets in \mathscr{F} is dense in E.

Summarizing, we may now formulate our result. For compact spaces X, $E = \mathbb{R}^n$, the unit families $\mathscr{E} = \{1\}$ and $\mathscr{F} = \{\mathbb{B}\}$, and \mathscr{N} consisting of all non-empty compact convex subsets of \mathbb{R}^n , it may be found in [6]. For paracompact spaces X and Frechét spaces E, related characterizations of Korovkin systems for set-valued functions had been established in [3, 4].

3.2. THEOREM. Let $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ be a weighted cone of set-valued functions. Let \mathscr{M} be a Korovkin system of non-negative functions, \mathscr{E} a unit

family for $C_{\mathscr{W}}(X)$, and let \mathscr{N} be a Korovkin system, \mathscr{F} a unit family for $(\mathscr{D}_{\mathfrak{B}}(E), \mathfrak{V})$. Then the functions

$$\begin{array}{lll} x \mapsto m(x) \ F & for \quad m \in \mathcal{M} \quad and \quad F \in \mathcal{F} \\ x \mapsto e(x) \ N & for \quad e \in \mathscr{E} \quad and \quad N \in \mathcal{N} \end{array}$$

form a Korovkin system for $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$.

This follows directly from Theorem 3.1, if we keep in mind that in the preceding representation, for $g \in C_{\mathscr{W}}(X)$ and $A \in \mathscr{D}_{\mathfrak{B}}(E)$ the set-valued function $x \mapsto g(x) A$ in $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{D}_{\mathfrak{B}}(E))$ corresponds to the real-valued function $g \otimes f_A$ in $C_{\mathscr{W} \otimes \mathscr{V}}(X \times Y)$.

3.3. EXAMPLES. (a) For X = [0, 1] and $\mathcal{W} = \{1\}$ we may choose the classical Korovkin system $\mathcal{M} = \{1, x, x^2\}$ and the unit family $\mathscr{E} = \{1\}$. For $E = \mathbb{R}^n$ and $\mathfrak{V} = \{\mathbb{B}\}$ we may choose $\mathcal{N} = \{\mathbb{B}, \{e_i\} \mid i = 1, ..., n\}$ (cf. Example 2.3(b)) and $\mathscr{F} = \{\mathbb{B}\}$. In this way Theorem 3.2 yields Vitale's result [11].

(b) Let $X = [0, +\infty)$, and let \mathscr{W} consist of the functions $w_{\alpha}(x) = e^{-\alpha x}$ for all $\alpha > 0$. Following Proposition 1.3, the subset

$$\mathcal{M} = \{m_k \mid m_k(x) = x^k \text{ for } k = 0, 1, 2\}$$

is a Korovkin system for $C_{\mathscr{W}}(X)$. We choose $\mathscr{E} = \{1\}$. For a normed space E and $\mathfrak{B} = \{\mathbb{B}\}$, the family $\mathscr{N} = \mathscr{F}$ of all segments $A = \{\lambda a \mid 0 \leq \lambda \leq 1\}$, for $a \in E$, forms a Korovkin system as well as a unit family for $\mathscr{C}_{\mathfrak{B}}(E)$ (Example 2.3(a)). With these insertions Theorem 3.3 describes a suitable Korovkin system for $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$.

Let us illustrate this example with an approximation process modeled by a modified version of the classical Bernstein operators. For a function F in $C_{\mathscr{W}\otimes\mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$ and $n \in \mathbb{N}$ define

$$T_n(F)(x) = \begin{cases} \sum_{k=0}^{n^2} \binom{n^2}{k} \binom{x}{n}^k \left(1 - \frac{x}{n}\right)^{n^2 - k} F\left(\frac{k}{n}\right), & \text{for } x < n\\ F(n) & \text{for } x \ge n. \end{cases}$$

These operators T_n are linear on $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$. With some straightforward computations one may check the following: for every $A \in \mathscr{C}_{\mathfrak{B}}(E)$

$$\begin{split} T_n(m_0 \otimes A)(x) &= A & \text{for all } x \in [0, +\infty), \\ T_n(m_1 \otimes A)(x) &= xA & \text{for all } x < n, \\ T_n(m_2 \otimes A)(x) &= \left(\frac{n^2 - 1}{n^2} x^2 + \frac{1}{n} x\right) A & \text{for all } x < n. \end{split}$$

This shows in particular, as A is bounded, that $T_n(m_k \otimes A)$ converges to $m_k \otimes A$ for k = 0, 1, 2 in the topology of $C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$. Furthermore, one may check that the sequence $(T_n)_{n \in \mathbb{N}}$ satisfies (C''), as for all $F, G \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$ and $\alpha > 0$ and all $n \in \mathbb{N}$

$$F(x) \subset G(x) + e^{\alpha x} \mathbb{B}$$
 for all $x \in X$

implies

$$T_n(F)(x) \subset T_n(G)(x) + e^{(e\alpha)x} \mathbb{B}$$
 for all $x \in X$.

We conclude that $T_n(F)$ converges to F for all $F \in C_{\mathscr{W} \otimes \mathfrak{B}}(X, \mathscr{C}_{\mathfrak{B}}(E))$.

(c) For $X = \mathbb{N}$ and $\mathcal{W} = \{1\}$, $C_{\mathcal{W}}(X)$ is the space c_0 of all sequences $(x_i)_{i \in \mathbb{N}}$ in \mathbb{R} converging to 0, endowed with the l^{∞} -norm. The family

$$\mathcal{M} = \{ (1/i^k)_{i \in \mathbb{N}} \mid \text{for } k = 1, 2, 3 \}$$

fulfills the criterion of Proposition 1.3 and forms a Korovkin system for c_0 . We choose $\mathscr{E} = \{(1/i)_{i \in \mathbb{N}}\}$. For a separable Hilbert space E and an orthonormal basis $\{e_i\}_{i \in \mathbb{N}}$, the linear operator T such that $T(e_i) = e_i/i$, is compact and its range is dense in E. Following Example 2.3(c), the set

$$\mathcal{N} = \{ B, \{ e_i \} \mid i \in \mathbb{N} \},\$$

where *B* is the closure of $T(\mathbb{B})$, forms a Korovkin system for $(\mathscr{C}_{\mathfrak{B}}(E), \mathfrak{V})$, where $\mathfrak{V} = \{\mathbb{B}\}$. We choose $\mathscr{F} = \{B\}$. The cone

$$C_{\mathscr{W}\otimes\mathfrak{B}}(X,\mathscr{C}_{\mathfrak{B}}(E))=c_0(\mathscr{C}_{\mathfrak{B}}(E))$$

consists of all sequences $(A_i)_{i \in \mathbb{N}}$ of non-empty compact convex subsets of E converging to $\{0\}$ with respect to the Hausdorff metric, endowed with the topology of uniform convergence. Using the above insertions for \mathcal{M} , \mathcal{N} , \mathscr{E} , and \mathscr{F} , Theorem 3.3 describes a suitable Korovkin system for $c_0(\mathscr{C}_{\mathfrak{B}}(E))$.

For a concrete approximation process, let P_n denote the orthogonal projection of E onto the span of $\{e_1, ..., e_n\}$, and for $A \in \mathscr{C}_{\mathfrak{B}}(E)$ set

$$P_n(A) = \{P_n(a) \mid a \in A\} \in \mathscr{C}_{\mathfrak{B}}(E).$$

We abbreviate B_n for $P_n(B)$ and observe that $B_n \subset B \subset B_n + (1/n) \mathbb{B}$. Now we define linear operators T_n on $c_0(\mathscr{C}_{\mathfrak{B}}(E))$ as follows: For $(A_i)_{i \in \mathbb{N}} \in c_0(\mathscr{C}_{\mathfrak{B}}(E))$ set

$$T_n((A_i)_{i \in \mathbb{N}}) = (P_n(A_i + A_{i+n}))_{i \in \mathbb{N}}$$

These operators satisfy (C"), as for all $(A_i)_{i \in \mathbb{N}}$, $(C_i)_{i \in \mathbb{N}} \in c_0(\mathscr{C}_{\mathfrak{B}}(E))$

$$A_i \subset C_i + \mathbb{B}$$
 for all $i \in \mathbb{N}$

implies

 $P_n(A_i + A_{i+n}) \subset P_n(C_i + C_{i+n}) + 2\mathbb{B}$ for all $i \in \mathbb{N}$.

We claim that $T_n((A_i))$ converges to (A_i) for all $(A_i) \in c_0(\mathscr{C}_{\mathfrak{B}}(E))$. For the sequences in our Korovkin system we have for k = 1, 2, 3

$$T_n\left(\left(\frac{1}{i^k}B\right)_{i\in\mathbb{N}}\right) = \left(\left(\frac{1}{i^k} + \frac{1}{(i+n)^k}\right)B_n\right)_{i\in\mathbb{N}},$$

thus for every $i \in \mathbb{N}$

$$\left(\frac{1}{i^k} + \frac{1}{(i+n)^k}\right) B_n \subset \frac{1}{i^k} B + \frac{1}{n} \mathbb{B}$$

and

$$\frac{1}{i^k} B \subset \left(\frac{1}{i^k} + \frac{1}{(i+n)^k}\right) B_n + \frac{1}{n} \mathbb{B}.$$

This shows convergence of the operators T_n toward the identity for the sequences in $\mathcal{M} \otimes \mathcal{F}$. This convergence is obvious for the sequences $(\{e_k/i\})_{i \in \mathbb{N}}$ in $\mathscr{E} \otimes \mathscr{N}$, hence our claim follows.

REFERENCES

- F. Altomare and M. Campiti, "Korovkin Type Approximation Theory and Its Applications," de Gruyter Studies in Mathematics, Vol. 17, de Gruyter, Berlin/New York, 1994.
- H. Bauer and K. Donner, Korovkin approximation in C₀(X), Math. Ann. 236 (1978), 225–237.
- M. Campiti, Approximation of set-valued continuous functions in Frechét spaces, I, II, Anal. Numer. Theor. Approx. 20, Nos. 1–2 (1991), 15–23, 25–38.
- M. Campiti, Convergence of nets of monotone operators between cones of set-valued functions, *Atti Accad. Sci. Torino* 126 (1992), 39–54.
- R. Holmes, "Geometric Functional Analysis and Its Applications," Graduate Texts in Mathematics, Vol. 24, Springer-Verlag, Heidelberg/Berlin/New York, 1975.
- 6. K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, *Proc. Amer. Math. Soc.* **104**, No. 3 (1988), 819–824.
- K. Keimel and W. Roth, "Ordered Cones and Approximation," Lecture Notes in Mathematics, Vol. 1517, Springer-Verlag, Heidelberg/Berlin/New York, 1992.

WALTER ROTH

- 8. L. Nachbin, "Elements of Approximation Theory," Van Nostrand, Princeton, NJ, 1967.
- J. B. Prolla, "Approximation of Vector-Valued Functions," Mathematical Studies, Vol. 25, North-Holland, Amsterdam, 1977.
- 10. W. Roth, A Korovkin type theorem for weighted spaces of continuous functions, Bull. Austral. Math. Soc. 55 (1997), 239-248.
- R. A. Vitale, Approximation of convex set-valued functions, J. Approx. Theory 26 (1979), 301–316.