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We investigate an approximation problem in weighted spaces of continuous func-
tions whose domain is a locally compact Hausdorff space and whose values are
non-empty compact convex subsets of a locally convex space. We prove a Korovkin
type approximation theorem for monotone linear operators on such spaces and
generalize results from earlier work which deals with compact domains and com-
pact convex subsets of a Freche� t space, resp. of Rn. � 1999 Academic Press
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1. WEIGHTED SPACES OF REAL-VALUED FUNCTIONS

Throughout this paper, let X be a locally compact Hausdorff space and
C(X) the space of all continuous real-valued functions on X. A function
f: X � R is said to vanish at infinity if for every =>0 the set
[x # X | | f (x)|�=] is relatively compact in X. According to Nachbin [8]
and Prolla [9] a family W of non-negative upper semicontinuous func-
tions on X is called a family of weights if for all w1 , w2 # W there are
w3 # W and \>0 such that w1�\w3 and w2�\w3 . With any family of
weights W we associate the subspace of C(X)

CW (X)=[ f # C(X) | wf vanishes at infinity for all w # W].

Together with the locally convex topology generated by the seminorms

pw ( f )=sup [ |wf (x)| | x # X]

for w # W and f # CW (X) we call CW (X) a weighted space of functions. We
shall mention a few examples and refer to [8�10] for details.
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1.1. Examples. (a) If W consists of the constant function w#1, then
CW (X)=C0 (X), the space of all functions in C(X) that vanish at infinity,
endowed with the supremum norm.

(b) If W=C +
0 (X)=[w # C0(X) | w�0], then CW (X)=CB(X), the

space of all bounded functions in C(X). The weighted topology (called the
strict topology) is generally coarser than the supremum norm topology on
CB(X).

(c) If W consists of the characteristic functions of all compact sub-
sets of X, then CW (X)=C(X) with the topology of compact convergence.

(d) If W consists of the characteristic functions of all finite subsets of
X, then CW (X)=C(X) with the topology of pointwise convergence.

(e) If W=C+ (X)=[w # C(X) | w�0], then CW (X)=Cc (X), the
space of all functions with compact support in C(X). The weighted topol-
ogy is generally finer than the supremum norm but coarser than the induc-
tive limit topology on Cc (X).

The weighted spaces CW (X) are endowed with the pointwise order for
functions. Korovkin type theorems deal with approximation processes
modeled by equicontinuous nets (T:): # A of positive linear operators
T: : CW (X) � CW (X). For a subset M of CW (X), the Korovkin closure
K(M) of M consists of all functions f # CW (X) such that T: ( f ) converges
to f in the weighted topology of CW (X) whenever (T:): # A is an equicon-
tinuous net of positive linear operators on CW (X) and T: (m) converges to
m for all m # M.

We shall cite Theorem 2.1 from [10]. For the special case of C0 (X) with
the supremum norm, i.e., the case of our Example 1.1(a), it is due to Bauer
and Donner [2]. By span(M) we denote the linear span of M, by MB(X)
the space of all finite regular Borel measures on X, and by M +

B (X) the
positive cone in MB(X). We set

X0=[x # X | w(x)>0 for some w # W].

1.2. Theorem. Let X be a locally compact Hausdorff space, and let W

be a family of weight functions on X. Let M be a subset of CW (X). For a
function f # CW (X) the following are equivalent:

(a) f # K(M).

(b) For every x # X0

f (x)= sup
w # W
=>0

inf [m(x) | m # span(M), wf�wm+=]

= inf
w # W
=>0

sup [m(x) | m # span(M), wm�wf +=].
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(c) For every x # X0 , , # M +
B (X) and w # W

|
X

wm d,=m(x) for all m # M implies |
X

wf d,= f (x).

A brief inspection of the proof in [10] reveals that for the validity of the
implications (b) � (c) � (a) the operators T: need to be defined only on a
subcone DW (X) of CW (X) that contains both M and the function f. The
requirements for operators on a cone, however, need to be adapted as
follows: Linearity means that an operator T: DW (X) � CW (X) is additive
and positively homogeneous. Continuity and monotony are combined in
the following condition:

(C) For every w # W there are w$ # W and \>0 such that for all
f, g # DW (X)

wT: ( f )�wT: (g)+1 whenever w$f�w$g+\.

Equicontinuity for a net (T:): # A of such operators means that the weight
function w$ and the constant \>0 may be chosen simultaneously for all
operators T: . Any linear operator satisfying (C) may be extended to
the linear span of DW (X) under preservation of (C). We refer to [7] for
a systematical introduction of continuous linear operators on (locally
convex) cones.

A Korovkin system for DW (X) is a subset M of DW (X) such that
DW (X)/K(M). Condition (c) of Theorem 1.2 yields the following
criterion which is a reformulation of Corollary 2.3 in [10]:

1.3. Proposition. Let M be a subset of CW (X). Suppose that M con-
tains a function that does not vanish on all of X0 and that for every pair of
distinct points x, y # X0 there is mx, y # span(M) such that

mx, y�0 on X0 , mx, y (x)=0, and mx, y ( y)>0.

Then M is a Korovkin system for CW (X).

We shall say that a subset E of non-negative functions in CW (X) is a
unit family if for every x # X0 there is ex # E such that ex(x)>0. A subset
S/CW (X) separates the points of X0 if for all x{ y # X0 there is s # S

such that s(x){s( y). For any pair of such families E and S the functions

M=[e, es, es2 | e # E, s # S]
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fulfill the above criterion, hence form a Korovkin system for CW (X): E

contains a non-zero function, and the condition in Proposition 1.3 is
satisfied by functions

y [ e( y)(s( y)&s(x))2.

For X=[0, 1], W=[1], E=[1], and S=[x] this leads to the classical
Korovkin system M=[1, x, x2] for C([0, 1]). Many more examples may
be found in [1, 2, 10]. Furthermore, condition (b) of Theorem 1.2 yields a
Stone�Weierstrass type result (Corollary 2.2 in [10]): The vector sublattice
generated by a Korovkin system M for CW (X) is seen to be dense in
CW (X) with respect to its weighted topology.

2. REPRESENTATIONS OF COMPACT CONVEX SETS

In the following, let E be a real locally convex topological vector space,
E$ its dual endowed with the weak* topology. For a subset A of E, its polar
in E$ is A%=[+ # E$ | +(a)�1 for all a # A]. The polar in E of a subset of
E$ is correspondingly defined. We consider the usual addition and multi-
plication of sets.

Let V be a family (not necessarily a base) of closed convex
neighborhoods of the origin in E, directed downward for set inclusion. A
subset A of E is said to be precompact relative to V if for all V # V and
=>0 there are a1 , ..., an # A such that

A/ .
n

i=1

(ai+=V).

We shall denote the cone of all non-empty convex subsets of E that are
precompact relative to V by CV (E) and by DV (E) any subcone thereof.
Every A # CV (E) is bounded relative to V, that is for every V # V there is
\>0 such that A/\V.

We proceed to represent the elements of CV (E) as continuous real-
valued functions on a suitable locally compact Hausdorff space Y. For a
fixed V # V let

YV=[(+, V) | 0{+ # V%],

endowed with the weak topology of the injection

(+, V) [ + : YV � E$.
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Thus YV is homeomorphic to V%"[0] and therefore locally compact and
Hausdorff. Now let

Y= �
V # V

YV

be the topological sum of the disjoint spaces YV . A subset of Y is open
(closed) if any only if its intersection with every YV is open (closed) in YV .
As a sum of locally compact Hausdorff spaces Y is itself locally compact
and Hausdorff.

Now with every set A # CV (E) we associate a real-valued function fA on
Y defined by

fA (+, V)=sup [+(a) | a # A]

for all (+, V) # Y. This function is seen to be continuous on Y, as for any
fixed V # V and =>0 there are a1 , ..., an # A such that A/�n

i=1 (ai+=U).
The function f $(+, V)=maxn

i=1 +(ai) is obviously continuous on YV and

f $(+, V)� fA (+, V)� f $(+, V)+=

holds whenever + # V%. This shows that fA itself is continuous on YV . But
continuity an all of the spaces YV implies continuity on their topological
sum. Next we observe that the mapping

A [ fA : CV (E) � C(Y)

is additive and positively homogeneous, i.e. fA+B= fA+ fB and f:A=:fA

for all A, B # CV (E) and :�0. If C is the convex hull of the sets
A, B # CV (E), then fC is the (pointwise) maximum of the functions fA and
fB . Furthermore, if V # V and v denotes the characteristic function on Y of
the subset YV , then for A, B # CV (E) and \�0

vfA�vfB+\ if and only if A/B+\$V for all \$>\.

To verify this claim, let A/B+\$V for any \$>\. Then for all a # A there
are b # B and v # V such that a=b+\$v, hence +(a)�+(b)+\$ for all
+ # V%. This shows fA (+, V)� fB(+, V)+\$ for all (+, V) # YV . If on the
other hand A/3 B+\$V for some \$>\, then a � B+\$V for some a # A,
that is (a&B) & \$V=<. By the Hahn�Banach separation theorem there
is + # E$ such that +(\$v)�\$�+(a)&+(b) for all v # V and b # B. This
shows 0{+ # V%. Then (+, V) # YV and \$� fA (+, V)& fB(+, V). Thus
fA (+, V)> fB(+, V)+\, indeed.
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The embedding A [ fA is therefore monotone if we endow CV (E) with
the set inclusion as order, and one-to-one on every subcone DV (E) of
CV (E) whose elements are closed sets in the topology on E that is created
by the neighborhoods in V.

For every V # V the set YV is both open and closed in Y. Its charac-
teristic function v is therefore continuous on Y. Moreover, for every
A # CV (E) the function vfA vanishes at infinity. Indeed, if fA (+, V)�= for
some =>0, then (+, V) # YV and the continuity of the function fA on YV

shows that the set [(+, V) # Yc | fA (+, V)�=] is compact.
We may now introduce suitable weighted topologies on CV (E): The set

V of characteristic functions v corresponding to the neighborhoods V # V
is directed upward and forms a family of weights on Y. Via the embedding
A [ fA the cone CV (E) may be considered as a subcone of CV (Y). The
weighted topology on CV (E) corresponding to the weighted topology of
CV (Y) is induced by the semimetrics

dV (A, B)=inf [\�0 | A/B+\V and B/A+\V]

for A, B # CV (E) and V # V. We call V a family of weights on CV (E) and
for any subcone DV (E) of CV (E) we call (DV (E), V) a weighted cone of
sets. Let us illustrate this with a few examples:

2.1. Examples. (a) If E is a normed space with unit ball B and
V=[B], then CV (E) carries the topology of the Hausdorff metric

dB (A, B)=inf [\�0 | A/B+\B and B/A+\B]

for A, B # CV (E).

(b) If E carries the weak topology induced by E$, that is V consists
of the polars of all finite subsets of E$, then the corresponding weighted
topology on CV (E) is generated by the semimetrics

d+ (A, B)=|sup
a # A

+(a)&sup
b # B

+(b)|

for A, B # CV (E) and + # E$.

(c) Let E be an ordered normed space with unit ball B, and for a
convex subset A of E denote by D(A) the decreasing closed and convex
hull of A, i.e., the closure of the set [b # E | b�a for some a # A]. Then
V=[D(B)] induces the topology of the Hausdorff metric with respect to
D(A) and D(B) for sets A, B # CV (E).
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We may use the family of neighborhoods V to define an order relation
on CV (E): For elements A, B # CV (E) we denote

APV B if A/B+=V for all V # V and =>0.

This relation on CV (E) is in general finer than the set inclusion. Via the
embedding as singleton sets it induces an order on E. By

E$V =� [\V% | V # V, \>0]

we denote the polar in E$ of the negative cone in this order on E. Its non-
zero elements are those functionals + # E$ such that (+, V) # Y for some
V # V.

In order to apply Theorem 1.2 we consider linear (i.e., additive and
positively homogeneous) operators T on subcones DV (E) of CV (E) satisfy-
ing:

(C$) For every V # V there are V$ # V and \>0 such that for all
A, B # DV (E)

T(A)/T(B)+V whenever A/B+\V$.

This requirement corresponds to condition (C) for the induced operators
on the representation of DV (E) as a subcone of CV (Y). It combines con-
tinuity and monotony with respect to the order P V . Equicontinuity for a
net (T:): # A of such operators means that V$ # V and \>0 may be chosen
simultaneously for all operators T: .

Correspondingly, the Korovkin closure K(N) of a family N/DV (E)
consists of all sets A # DV (E) such that T: (A) converges to A, whenever
(T:): # A is an equicontinuous net of linear operators on DV (E) satisfying
(C$), and T: (N) converges to N for all N # N. Convergence is meant in the
weighted topology of DV (E). If K(N)=DV (E), then N is a Korovkin
system for (DV (E), V). Using the representation of DV (E) as a subcone of
CV (Y), we shall proceed to identify Korovkin systems:

Only singleton sets [a] # CV (E) have an additive inverse [&a] # CV (E),
and f[&a]=&f[a] holds for the representing functions in CV (Y). For a
subset N of CV (E) we define its span to be the subcone of CV (E) generated
by N and the negatives of all singleton sets in N. By span(N) we denote
the closure of this span with respect to the weighted topology of
(CV (E), V).

For + # E$V , the half space

H+=[a # E | +(a)�0]
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is closed in E and decreasing with respect to the order P V . The following
criterion for Korovkin systems in (DV (E), V) corresponds to the criterion
for Korovkin systems in CW (X) in Proposition 1.3:

2.2. Proposition. Let (DV (E), V) be a weighted cone of sets, N a sub-
set of DV (E). Suppose that for every + # E$V the union of all sets DV (N), for
N # span(N) such that 0 # DV (N)/H+ , is dense in H+ . Then N is a
Korovkin system for (DV (E), V).

Proof. We shall verify condition (c) from Theorem 1.2 for CV (Y): Let
(+, V) # Y, that is, 0{+ # E$V , and let , # M +

B (Y) and v # V such that
�Y vfN d,= fN(+, V) holds for all N # N, hence even for all N # span(N).
For any (&, U) # Y there is either an element a in the interior of H+ such
that &(a)>0, or H+ /H& , hence & is a positive multiple of +. In the first
case, by our assumption we may find a$ # H+ such that &(a$)>0 as well,
and a$ # N for some N # span(N) such that 0 # DV (N)/H+ . We infer that
the corresponding function fN is non-negative on Y, fN(+, V)=0 and
fN(&, U)� y(a$)>0. As �Y vfN d,=0, this shows that any such point
(&, U) # Y may not be contained in the support of the measure v,. This
measure is therefore supported by the set

[(&, U) # Y | &=*+ for some *>0].

But on this set any two functions fA and fB representing sets A and B in
DV (E) are proportional. The measure v, therefore coincides on the
representation of DV (E) with a certain positive multiple \=(+, V) of the point
evaluation in (+, V). Now we use our assumption for &=0 # E$V : There is
a # H0=E such that +(a)>0 and a # N for some N # span(N), hence
fN(+, V)>0. But this yields �Y vfN d,=\= (+, V) ( fN)= fN(+, V), demon-
strating that \=1, indeed. K

2.3. Examples. (a) If span(N) contains the segments [*a | 0�*�1]
for all a # E, then N fulfills the criterion of Proposition 2.2, hence is a
Korovkin system for (CV (E), V) for any choice of the family of weights V.

(b) For E=Rn with the unit vectors ei and the Euclidean unit ball
B, the family

N=[B, [ei] | i=1, ..., n]

forms a Korovkin system for (CV (Rn), V), where V=[B]. This is a special
case of the following:

(c) Let E be a separable real Hilbert space with the inner product
( , ) and unit ball B. Let T: E � E be a compact linear operator whose
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range is dense in E. The closure B of T(B) is compact and convex. Let
[ei] i # N be an orthonormal basis for E. We claim that the family

N=[B, [ei] | i # N]

forms a Korovkin system for (CV (E), V), where V=[B]. We shall verify
the criterion of Proposition 2.2.

For 0{ y # E, let Hy=[a # E | (a, y)�0] be a closed half space in E.
The adjoint operator T* of T is one-to-one, as the range of T is dense in
E, hence T*( y){0, and we set

b0=&T*( y)&&1 T(T*( y)) # B.

As for all b # B

(T(b), y)=(b, T*( y)) �&T*( y)&=(b0 , y) ,

we infer that

(b0 , y)=max[(b, y) | b # B],

hence 0 # N=B&b0/Hy . Clearly N # span(N). Now a simple Hahn�
Banach argument shows that the union of all positive multiples of N is
indeed dense in Hy : Let x # E such that (n, x)�0 for all n # N, i.e.
(b, x)�(b0 , x) for all b # B. The choice of

b=&T*(x)&&1 T(T*(x)) # B,

for the above, together with the Cauchy�Schwarz inequality yields

&T*(x)&�&T*(x)&&1 (T*( y), T*(x)�&T*(x)&.

But equality shows that the vectors T*( y) and T*(x) are linearly depend-
ent, and as T* is one-to-one, we infer that x is a multiple of y. Again using
the density of the range of T, we conclude that this multiple is non-
negative, and (c, x) �0 holds for all c # Hy . Therefore Hy is contained in
the closed subcone of E generated by N.

For H0=E we choose N=B # N and observe that by our assumption
on T the union of all positive multiples of B is dense in E.

(d) Let E be a real reflexive Banach space with unit ball B. The
norm on E is smooth if every point in the boundary of B is supported by
a unique closed hyperplane (cf. [5, 20F]). In this case, let V be a
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neighborhood base for the weak topology on E induced by E$. Then
B # CV (E). Let S be a total subset (i.e. the span of S is dense) of E. Then
the family

N=[B, [e] | e # S]

forms a Korovkin system for (CV (E), V). We shall verify the criterion of
Proposition 2.2.

For 0{+ # E$ let H+=[a # E | +(a)�0] be a closed half space in E.
There is b0 in the boundary of B such that

+(b0)=max[+(b) | b # B],

hence 0 # N=B&b0/H+ and N # span(N). As there is no other closed
hyperplane H in E with this property, the union of all positive multiples of
N is seen to be dense in H+ . For H0=E we choose all multiples of
N=B # N.

Examples of smoothly normed reflexive Banach spaces are integration
spaces L p (X, +) for 1<p<+�.

(e) For E=R and V=[(&�, 1]], all bounded above intervals in R
are precompact relative to V, hence contained in CV (R). A Korovkin
system for (CV (R), V) is given by N=[(&�, 1]].

2.4. Remark. Readers familiar with the theory of locally convex cones
as developed in [7] will realize that a similar representation may be used
in this more general situation: A locally convex cone (P, V) may be embed-
ded in a full cone (P� , V) that contains all neighborhoods as elements. The
dual cone of P� is locally compact in its weak* topology and serves as the
domain for a suitable weighted space of real valued functions CV (Y).
The weight functions are the characteristic functions of the polars of
neighborhoods. If all its elements are bounded, then P is canonically
represented as a subcone of CV (Y).

3. WEIGHTED CONES OF SET-VALUED FUNCTIONS

As before, let X be a locally compact Hausdorff space and W a family
of weights on X. Let E be a real locally convex topological vector space
and V a family of closed convex neighborhoods of the origin in E, directed
downward for set inclusion. Let CV (E) be the cone of all non-empty convex
subsets of E that are precompact relative to V, DV (E) a subcone of CV (E).
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A function F: X � DV (E) is continuous at x0 # X if for every V # V and
=>0 there is a neighborhood U of x0 such that dV (F(x), F(x0))�=, that is,

F(x)/F(x0)+=V and F(x0)/F(x)+=V

for all x # U. Let C(X, DV (E)) denote the cone of all such functions that are
continuous on X. Given V # V, we say that a function F: X � DV (E)
vanishes at infinity relative to V if for every =>0 the set [x # X | F(x)/3 =V]
is relatively compact in X. Accordingly, we denote by CW�V (X, DV (E))
the cone of all functions F # C(X, DV (E)) such that wF vanishes at infinity
relative to V for all V # V and w # W. The weighted topology on
CW�V (X, DV (E)) is induced by the semimetrics

dw, V (F, G)=sup
x # X

[w(x) dV (F(x), G(x))]

for F, G # CW�V (X, DV (E )), w # W and V # V. We call CW�V (X, DV (E ))
a weighted cone of set-valued functions. Simple compactness arguments
show that for any real-valued function f # CW (X ) and a set A # DV (E) the
set-valued function

x [ f (x) A

belongs to CW�V (X, DV (E )). For any function F # CW�V (X, DV (E )), all
w # W, V # V, and =>0 one may find a set C # CV (E ) such that

w(x) F(x)/C+=V for all x # X.

For Korovkin type approximation problems we consider linear (i.e.,
additive and positively homogeneous) operators T on CW�V (X, DV (E ))
satisfying

(C") For all w # W and V # V there are w$ # W, V$ # V and \>0 such
that for all F, G # CW�V (X, DV (E))

w(x) T(F )(x)/w(x) T(G)(x)+V for all x # X,

whenever

w$(x) F(x)/w$(x) G(x)+\V$ for all x # X,

Evidently, this condition combines continuity and monotony. Equicon-
tinuity for a net (T:): # A of such operators means that w$, V$ and \ may
be chosen simultaneously for all operators T: .
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For a subset L of CW�V (X, DV (E )), the Korovkin closure K(L) of L

consists of all functions F # CW�V (X, DV (E )) such that T: (F ) converges
to F, whenever (T:): # A is an equicontinuous net of linear operators on
CW�V (X, DV (E )) satisfying (C"), and T: (L) converges to L for all L # L.
Convergence is meant in the weighted topology of CW�V (X, DV (E )).

We shall use the representation of (DV (E ), V) as a subcone of CV (Y )
in order to represent CW�V (X, DV (E )) as a subcone of a weighted space
of real-valued functions on X_Y. We begin with some general observa-
tions.

For real-valued functions f on X and g on Y we shall denote by f�g the
function (x, y) [ g(x) f ( y) on X_Y. For sets M and N of real-valued
functions on X and Y we set

M�N=[m�n | m # M, n # N].

The function f�g is continuous on X_Y if both f and g are continuous
on X and Y, upper resp. lower semicontinuous if both f and g are upper
resp. lower semicontinuous and non-negative. Thus, if W and V are
families of weights on X and Y respectively, then W�V is a family of
weights on X_Y. It is straightforward to check that

CW (X )�CV (Y)/CW�V (X_Y ).

For the seminorms on CW�V (X_Y ), note that

pw�v ( f�g)= pw ( f ) pv (g).

As before we denote by

X0=[x # X | w(x)>0 for some w # W]

and

Y0=[ y # Y | v( y)>0 for some v # V].

For compact spaces X and Y and the unit families E=[1] and F=[1]
the following may be found in [6]:

3.1. Theorem. Let X and Y be locally compact Hausdorff spaces, W

and V families of weights on X and Y, respectively. Let M be a Korovkin
system, E a unit family for CW (X ). Let N be a subset, F a unit family for
CV (Y ). Set

L=(M�F) _ (E�N).
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If for F # CW�V (X_Y) the functions y [ F(x, y) are in K(N) for every
x # X0 , then F # K(L). In particular, if N is a Korovkin system for CV (Y ),
then L is a Korovkin system for CW�V (X_Y ).

Proof. We shall verify condition (c) in Theorem 1.2. Let (x0 , y0) #
X0_Y0 , and let , # M +

B (X_Y ) and w�v # W�V such that

|
X_Y

(w�v) L d,=L(x0 , y0) for all L # L.

For any non-negative function f # span(F) such that f ( y0)=1, the
mapping

g [ g� f : CW (X ) � CW�V (X_Y )

is an embedding that preserves the seminorms of CW (X), as for
w$�v$ # W�V we have pw$�v$ (g� f )= pw$ (g) pv$ ( f ), and as pv$ ( f )>0
for some v$ # V. Thus

g [ |
X_Y

(w�v)(g� f ) d,

defines a continuous positive linear functional on CW (X ) which coincides
with the point evaluation in x0 on the Korovkin system M, hence on all
of CW (X ) by Theorem 1.2(c). Now for any x0 {x # X there is a non-
negative function g # CW (X ) such that g(x)>g(x0)=0, and for any y # Y0

there is a non-negative function f # span(F) such that f ( y0)=1 and
f ( y)>0. The above shows that none of these points (x, y) may be in the
support of the Borel measure (w�v) ,. As v( y)=0 for the remaining
points y # Y, we realize that this measure is in fact supported by the set
[x0]_Y/X_Y. Next we choose a non-negative function e # span(E) such
that e(x0)=1. The mapping

g [ e�g : CV (Y ) [ CW�V (X_Y )

is an embedding that preserves the seminorms of CV (Y ), and

g [ |
X_Y

(w�v)(e�g) d,

is a continuous positive linear functional on CV (Y ) that evaluates as n( y0)
for all n # N. Thus, as the function f, mapping y [ F(x0 , y), is contained
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in K(N), and as the functions F and e� f coincide on the set [x0]_Y,
we have

|
X_Y

(w�v) F d,=|
x_Y

(w�v)(e� f ) d,= f ( y0)=F(x0 , y0),

indeed. K

For our purposes we choose the locally compact space Y and the family
V weight functions corresponding to the neighborhood system V as in
Section 2. With every set-valued function F # CW�V (X, DV (E )) we
associate the real-valued function fF on X_Y such that for x # X and
y=(+, V) # Y

fF (x, y)= fF(x) (+, V)=sup [+(a) | a # F(x)].

We first verify that fF is continuous on X_Y: Let x0 # X and
y0=(+, V) # Y. Given =>0, from the continuity of the function fF(x0) on Y
we infer that there is a neighborhood UY /YV of y0 such that

| fF (x0 , y)& fF (x0 , y0)|=| fF(x0) ( y)& fF(x0) ( y0)|�=�2

holds for all y # UY . Likewise, using the neighborhood V # V from above,
there is a neighborhood UX of x0 such that

dV (F(x), F(x0))�=�2

for all x # UX . Then for all (x, y) # UX _UY

| fF (x, y)& fF (x0 , y)|=| fF(x) (+, V)& fF(x0) (+, V)|�=�2.

Thus

| fF (x, y)& fF (x0 , y0)|�| fF (x, y)& fF (x0 , y)|+| fF (x0 , y)& fF (x0 , y0)|

�=.

Next we shall show that fF belongs to CW�V (X_Y) whenever F belongs
to CW�V (X, DV (E )). Indeed, for w # W, the weight function v # V corre-
sponding to V # V and =>0,

(w�v) fF (x, y)=v( y) w(x) fF(x) ( y)�=

for (x, y) # X_Y implies that y=(+, V) # YV , hence + # V% and w(x) F(x)
/3 (=�2) V. Therefore x belongs to the relatively compact subset

Xc=[x # X | w(x) F(x)/3 (=�2) V]
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of X. As mentioned before, one may find C # CV (E ) such that w(x) F(x)/
C+(=�2) V for all x # X. Accordingly,

=�v( y) w(x) fF(x) ( y)� fC( y)+=�2

shows that y belongs to

Yc=[(&, V) # YV | fC( y)�=�2].

This set is compact, as fC is continuous on Y, demonstrating that (x, y)
belongs to the relatively compact product Xc_Yc , indeed. The embedding

F [ fF : CW�V (X, DV (E )) � CW�V (X_Y )

is additive, positively homogeneous, and monotone if we endow
CW�V (X, DV (E )) with the order of pointwise set inclusion. Furthermore,
for F, G # CW�V (X, DV(E )) and \�0 we have

(w�v) fF (x, y)�(w�v) fG(x, y)+\

for all (x, y) # X_Y if and only if

w(x) F(x)/w(x) G(x)+\$V

for all x # X and \$>\. Thus, linear operators on CW�V (X, DV (E ))
satisfying (C") correspond to linear operators on a subcone of
CW�V (X_Y ) satisfying (C).

Propositions 1.3 and 2.2 provide criteria to identify Korovkin systems in
CW (X) and DV (E), the latter being identified with a subcone of CV (Y ).
Unit families in CW (X ) are obvious and may consist of a single strictly
positive function. A unit family F in DV (E ) consists of sets F # DV (E ) such
that 0 # DV (F ). This guarantees that the function fF is non-negative on Y.
We require that for every y=(+, V) # Y there is F # F such that fF ( y)>0.
The latter holds in particular if the union of all non-negative multiplies of
the sets in F is dense in E.

Summarizing, we may now formulate our result. For compact spaces X,
E=Rn, the unit families E=[1] and F=[B], and N consisting of all
non-empty compact convex subsets of Rn, it may be found in [6]. For
paracompact spaces X and Freche� t spaces E, related characterizations of
Korovkin systems for set-valued functions had been established in [3, 4].

3.2. Theorem. Let CW�V (X, DV (E )) be a weighted cone of set-valued
functions. Let M be a Korovkin system of non-negative functions, E a unit
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family for CW (X), and let N be a Korovkin system, F a unit family for
(DV (E), V). Then the functions

x [ m(x) F for m # M and F # F

x [ e(x) N for e # E and N # N

form a Korovkin system for CW�V (X, DV (E )).

This follows directly from Theorem 3.1, if we keep in mind that in the
preceding representation, for g # CW (X) and A # DV (E) the set-valued
function x [ g(x) A in CW�V (X, DV (E )) corresponds to the real-valued
function g� fA in CW�V (X_Y ).

3.3. Examples. (a) For X=[0, 1] and W=[1] we may choose the
classical Korovkin system M=[1, x, x2] and the unit family E=[1].
For E=Rn and V=[B] we may choose N=[B, [ei] | i=1, ..., n] (cf.
Example 2.3(b)) and F=[B]. In this way Theorem 3.2 yields Vitale's
result [11].

(b) Let X=[0, +�), and let W consist of the functions w: (x)=
e&:x for all :>0. Following Proposition 1.3, the subset

M=[mk | mk (x)=xk for k=0, 1, 2]

is a Korovkin system for CW (X ). We choose E=[1]. For a normed space
E and V=[B], the family N=F of all segments A=[*a | 0�*�1],
for a # E, forms a Korovkin system as well as a unit family for CV (E )
(Example 2.3(a)). With these insertions Theorem 3.3 describes a suitable
Korovkin system for CW�V (X, CV (E )).

Let us illustrate this example with an approximation process modeled by
a modified version of the classical Bernstein operators. For a function F in
CW�V (X, CV (E )) and n # N define

Tn (F )(x)={ :
n2

k=0
\n2

k +\
x
n+

k

\1&
x
n+

n2&k

F \k
n+ , for x<n

F(n) for x�n.

These operators Tn are linear on CW�V (X, CV (E )). With some straight-
forward computations one may check the following: for every A # CV (E )

Tn (m0 �A)(x)=A for all x # [0, +�),

Tn (m1 �A)(x)=xA for all x<n,

Tn (m2 �A)(x)=\n2&1
n2 x2+

1
n

x+ A for all x<n.
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This shows in particular, as A is bounded, that Tn (mk �A) converges to
mk �A for k=0, 1, 2 in the topology of CW�V (X, CV (E)). Furthermore,
one may check that the sequence (Tn)n # N satisfies (C"), as for all
F, G # CW�V (X, CV (E )) and :>0 and all n # N

F(x)/G(x)+e:xB for all x # X

implies

Tn (F )(x)/Tn (G)(x)+e(e:) x B for all x # X.

We conclude that Tn (F ) converges to F for all F # CW�V (X, CV (E )).

(c) For X=N and W=[1], CW (X) is the space c0 of all sequences
(xi) i # N in R converging to 0, endowed with the l�-norm. The family

M=[(1�ik) i # N | for k=1, 2, 3]

fulfills the criterion of Proposition 1.3 and forms a Korovkin system for c0 .
We choose E=[(1�i) i # N]. For a separable Hilbert space E and an
orthonormal basis [ei]i # N , the linear operator T such that T(ei)=ei �i, is
compact and its range is dense in E. Following Example 2.3(c), the set

N=[B, [ei] | i # N],

where B is the closure of T(B), forms a Korovkin system for (CV (E), V),
where V=[B]. We choose F=[B]. The cone

CW�V (X, CV (E ))=c0 (CV (E ))

consists of all sequences (Ai)i # N of non-empty compact convex subsets of
E converging to [0] with respect to the Hausdorff metric, endowed with
the topology of uniform convergence. Using the above insertions for M,
N, E, and F, Theorem 3.3 describes a suitable Korovkin system for
c0 (CV (E )).

For a concrete approximation process, let Pn denote the orthogonal
projection of E onto the span of [e1 , ..., en], and for A # CV (E ) set

Pn (A)=[Pn (a) | a # A] # CV (E).

We abbreviate Bn for Pn (B) and observe that Bn /B/Bn+(1�n) B.
Now we define linear operators Tn on c0 (CV (E )) as follows: For
(Ai) i # N # c0 (CV (E)) set

Tn ((A i) i # N)=(Pn (Ai+Ai+n)) i # N .
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These operators satisfy (C"), as for all (Ai) i # N , (Ci)i # N # c0 (CV (E ))

Ai /Ci+B for all i # N

implies

Pn (Ai+A i+n)/Pn (Ci+Ci+n)+2B for all i # N.

We claim that Tn ((A i)) converges to (Ai) for all (Ai) # c0 (CV (E)). For the
sequences in our Korovkin system we have for k=1, 2, 3

Tn \\1
ik B+ i # N+=\\1

ik+
1

(i+n)k+ Bn+ i # N

,

thus for every i # N

\1
ik+

1
(i+n)k+ Bn /

1
ik B+

1
n

B

and

1
ik B/\1

ik+
1

(i+n)k+ Bn+
1
n

B.

This shows convergence of the operators Tn toward the identity for the
sequences in M�F. This convergence is obvious for the sequences
([ek �i]) i # N in E�N, hence our claim follows.
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